Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0a Structured version   Visualization version   GIF version

Theorem signstfveq0a 34544
Description: Lemma for signstfveq0 34545. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signstfveq0a (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0a
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3915 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 signstfveq0.1 . . . . 5 𝑁 = (♯‘𝐹)
4 lencl 14440 . . . . 5 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
53, 4eqeltrid 2832 . . . 4 (𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0)
62, 5syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
7 eldifsn 4737 . . . . 5 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
81, 7sylib 218 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
9 hasheq0 14270 . . . . . . 7 (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
109necon3bid 2969 . . . . . 6 (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1110biimpar 477 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
123neeq1i 2989 . . . . 5 (𝑁 ≠ 0 ↔ (♯‘𝐹) ≠ 0)
1311, 12sylibr 234 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝑁 ≠ 0)
148, 13syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 0)
15 elnnne0 12398 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
166, 14, 15sylanbrc 583 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
17 simplr 768 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ 0)
18 simpr 484 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
1917, 18neeqtrrd 2999 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ (𝐹‘(𝑁 − 1)))
2019necomd 2980 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ≠ (𝐹‘0))
21 oveq1 7356 . . . . . 6 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
22 1m1e0 12200 . . . . . 6 (1 − 1) = 0
2321, 22eqtrdi 2780 . . . . 5 (𝑁 = 1 → (𝑁 − 1) = 0)
2423fveq2d 6826 . . . 4 (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0))
2524necon3i 2957 . . 3 ((𝐹‘(𝑁 − 1)) ≠ (𝐹‘0) → 𝑁 ≠ 1)
2620, 25syl 17 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 1)
27 eluz2b3 12823 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2816, 26, 27sylanbrc 583 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  c0 4284  ifcif 4476  {csn 4577  {cpr 4579  {ctp 4581  cop 4583  cmpt 5173  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  1c1 11010  cmin 11347  -cneg 11348  cn 12128  2c2 12183  0cn0 12384  cuz 12735  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420  sgncsgn 14993  Σcsu 15593  ndxcnx 17104  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421
This theorem is referenced by:  signstfveq0  34545
  Copyright terms: Public domain W3C validator