| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfveq0a | Structured version Visualization version GIF version | ||
| Description: Lemma for signstfveq0 34614. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| signstfveq0.1 | ⊢ 𝑁 = (♯‘𝐹) |
| Ref | Expression |
|---|---|
| signstfveq0a | ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
| 2 | 1 | eldifad 3943 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ) |
| 3 | signstfveq0.1 | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
| 4 | lencl 14556 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
| 5 | 3, 4 | eqeltrid 2839 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0) |
| 7 | eldifsn 4767 | . . . . 5 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
| 8 | 1, 7 | sylib 218 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
| 9 | hasheq0 14386 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
| 10 | 9 | necon3bid 2977 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
| 11 | 10 | biimpar 477 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
| 12 | 3 | neeq1i 2997 | . . . . 5 ⊢ (𝑁 ≠ 0 ↔ (♯‘𝐹) ≠ 0) |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝑁 ≠ 0) |
| 14 | 8, 13 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 0) |
| 15 | elnnne0 12520 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 16 | 6, 14, 15 | sylanbrc 583 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ) |
| 17 | simplr 768 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ 0) | |
| 18 | simpr 484 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0) | |
| 19 | 17, 18 | neeqtrrd 3007 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ (𝐹‘(𝑁 − 1))) |
| 20 | 19 | necomd 2988 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ≠ (𝐹‘0)) |
| 21 | oveq1 7417 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 22 | 1m1e0 12317 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 23 | 21, 22 | eqtrdi 2787 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 24 | 23 | fveq2d 6885 | . . . 4 ⊢ (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0)) |
| 25 | 24 | necon3i 2965 | . . 3 ⊢ ((𝐹‘(𝑁 − 1)) ≠ (𝐹‘0) → 𝑁 ≠ 1) |
| 26 | 20, 25 | syl 17 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 1) |
| 27 | eluz2b3 12943 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
| 28 | 16, 26, 27 | sylanbrc 583 | 1 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 ∅c0 4313 ifcif 4505 {csn 4606 {cpr 4608 {ctp 4610 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ℝcr 11133 0cc0 11134 1c1 11135 − cmin 11471 -cneg 11472 ℕcn 12245 2c2 12300 ℕ0cn0 12506 ℤ≥cuz 12857 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 Word cword 14536 sgncsgn 15110 Σcsu 15707 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 Σg cgsu 17459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 |
| This theorem is referenced by: signstfveq0 34614 |
| Copyright terms: Public domain | W3C validator |