| Step | Hyp | Ref
| Expression |
| 1 | | rpnnen1lem.n |
. . . 4
⊢ ℕ
∈ V |
| 2 | 1 | mptex 7243 |
. . 3
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈
V |
| 3 | | rpnnen1lem.2 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| 4 | 3 | fvmpt2 7027 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ V) → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| 5 | 2, 4 | mpan2 691 |
. 2
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| 6 | | rpnnen1lem.1 |
. . . . . . 7
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| 7 | | ssrab2 4080 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ |
| 8 | 6, 7 | eqsstri 4030 |
. . . . . 6
⊢ 𝑇 ⊆
ℤ |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆
ℤ) |
| 10 | | nnre 12273 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 11 | | remulcl 11240 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
| 12 | 11 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
| 13 | 10, 12 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) |
| 14 | | btwnz 12721 |
. . . . . . . . . . . 12
⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) |
| 15 | 14 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
| 16 | 13, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
𝑛 < (𝑘 · 𝑥)) |
| 17 | | zre 12617 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈
ℝ) |
| 19 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈
ℝ) |
| 20 | | nngt0 12297 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
| 21 | 10, 20 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
| 22 | 21 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
| 23 | | ltdivmul 12143 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
| 24 | 18, 19, 22, 23 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
| 25 | 24 | rexbidva 3177 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) |
| 26 | 16, 25 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥) |
| 27 | | rabn0 4389 |
. . . . . . . . 9
⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) |
| 28 | 26, 27 | sylibr 234 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
| 29 | 6 | neeq1i 3005 |
. . . . . . . 8
⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
| 30 | 28, 29 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) |
| 31 | 6 | reqabi 3460 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) |
| 32 | 10 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈
ℝ) |
| 33 | 32, 19, 11 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) |
| 34 | | ltle 11349 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
| 35 | 18, 33, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
| 36 | 24, 35 | sylbid 240 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) |
| 37 | 36 | impr 454 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) |
| 38 | 31, 37 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) |
| 39 | 38 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) |
| 40 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑘 · 𝑥) → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ (𝑘 · 𝑥))) |
| 41 | 40 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑦 = (𝑘 · 𝑥) → (∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥))) |
| 42 | 41 | rspcev 3622 |
. . . . . . . 8
⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
| 43 | 13, 39, 42 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑦 ∈ ℝ
∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
| 44 | | suprzcl 12698 |
. . . . . . 7
⊢ ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇) |
| 45 | 9, 30, 43, 44 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ 𝑇) |
| 46 | 8, 45 | sselid 3981 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℤ) |
| 47 | | znq 12994 |
. . . . 5
⊢
((sup(𝑇, ℝ,
< ) ∈ ℤ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ∈
ℚ) |
| 48 | 46, 47 | sylancom 588 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(sup(𝑇, ℝ, < ) /
𝑘) ∈
ℚ) |
| 49 | | eqid 2737 |
. . . 4
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) |
| 50 | 48, 49 | fmptd 7134 |
. . 3
⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)):ℕ⟶ℚ) |
| 51 | | rpnnen1lem.q |
. . . 4
⊢ ℚ
∈ V |
| 52 | 51, 1 | elmap 8911 |
. . 3
⊢ ((𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ (ℚ
↑m ℕ) ↔ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)):ℕ⟶ℚ) |
| 53 | 50, 52 | sylibr 234 |
. 2
⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ (ℚ
↑m ℕ)) |
| 54 | 5, 53 | eqeltrd 2841 |
1
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m
ℕ)) |