Step | Hyp | Ref
| Expression |
1 | | rpnnen1lem.n |
. . . 4
⊢ ℕ
∈ V |
2 | 1 | mptex 7099 |
. . 3
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈
V |
3 | | rpnnen1lem.2 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
4 | 3 | fvmpt2 6886 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ V) → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
5 | 2, 4 | mpan2 688 |
. 2
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
6 | | rpnnen1lem.1 |
. . . . . . 7
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
7 | | ssrab2 4013 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ |
8 | 6, 7 | eqsstri 3955 |
. . . . . 6
⊢ 𝑇 ⊆
ℤ |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆
ℤ) |
10 | | nnre 11980 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
11 | | remulcl 10956 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
12 | 11 | ancoms 459 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
13 | 10, 12 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) |
14 | | btwnz 12423 |
. . . . . . . . . . . 12
⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) |
15 | 14 | simpld 495 |
. . . . . . . . . . 11
⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
16 | 13, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
𝑛 < (𝑘 · 𝑥)) |
17 | | zre 12323 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
18 | 17 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈
ℝ) |
19 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈
ℝ) |
20 | | nngt0 12004 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
21 | 10, 20 | jca 512 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
22 | 21 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
23 | | ltdivmul 11850 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
24 | 18, 19, 22, 23 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
25 | 24 | rexbidva 3225 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) |
26 | 16, 25 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥) |
27 | | rabn0 4319 |
. . . . . . . . 9
⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) |
28 | 26, 27 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
29 | 6 | neeq1i 3008 |
. . . . . . . 8
⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
30 | 28, 29 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) |
31 | 6 | rabeq2i 3422 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) |
32 | 10 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈
ℝ) |
33 | 32, 19, 11 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) |
34 | | ltle 11063 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
35 | 18, 33, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
36 | 24, 35 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) |
37 | 36 | impr 455 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) |
38 | 31, 37 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) |
39 | 38 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) |
40 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑘 · 𝑥) → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ (𝑘 · 𝑥))) |
41 | 40 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑦 = (𝑘 · 𝑥) → (∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥))) |
42 | 41 | rspcev 3561 |
. . . . . . . 8
⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
43 | 13, 39, 42 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑦 ∈ ℝ
∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
44 | | suprzcl 12400 |
. . . . . . 7
⊢ ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇) |
45 | 9, 30, 43, 44 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ 𝑇) |
46 | 8, 45 | sselid 3919 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℤ) |
47 | | znq 12692 |
. . . . 5
⊢
((sup(𝑇, ℝ,
< ) ∈ ℤ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ∈
ℚ) |
48 | 46, 47 | sylancom 588 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(sup(𝑇, ℝ, < ) /
𝑘) ∈
ℚ) |
49 | | eqid 2738 |
. . . 4
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) |
50 | 48, 49 | fmptd 6988 |
. . 3
⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)):ℕ⟶ℚ) |
51 | | rpnnen1lem.q |
. . . 4
⊢ ℚ
∈ V |
52 | 51, 1 | elmap 8659 |
. . 3
⊢ ((𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ (ℚ
↑m ℕ) ↔ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)):ℕ⟶ℚ) |
53 | 50, 52 | sylibr 233 |
. 2
⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ (ℚ
↑m ℕ)) |
54 | 5, 53 | eqeltrd 2839 |
1
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m
ℕ)) |