MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem1 Structured version   Visualization version   GIF version

Theorem rpnnen1lem1 12431
Description: Lemma for rpnnen1 12436. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem1 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . 4 ℕ ∈ V
21mptex 6983 . . 3 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
3 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
43fvmpt2 6775 . . 3 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
52, 4mpan2 690 . 2 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
6 rpnnen1lem.1 . . . . . . 7 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
7 ssrab2 3986 . . . . . . 7 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
86, 7eqsstri 3928 . . . . . 6 𝑇 ⊆ ℤ
98a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℤ)
10 nnre 11694 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
11 remulcl 10673 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
1211ancoms 462 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
1310, 12sylan2 595 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
14 btwnz 12136 . . . . . . . . . . . 12 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
1514simpld 498 . . . . . . . . . . 11 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
1613, 15syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
17 zre 12037 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
1817adantl 485 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
19 simpll 766 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
20 nngt0 11718 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
2110, 20jca 515 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
2221ad2antlr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
23 ltdivmul 11566 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2418, 19, 22, 23syl3anc 1368 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2524rexbidva 3220 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
2616, 25mpbird 260 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
27 rabn0 4284 . . . . . . . . 9 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
2826, 27sylibr 237 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
296neeq1i 3015 . . . . . . . 8 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
3028, 29sylibr 237 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
316rabeq2i 3400 . . . . . . . . . 10 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
3210ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
3332, 19, 11syl2anc 587 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
34 ltle 10780 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
3518, 33, 34syl2anc 587 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
3624, 35sylbid 243 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
3736impr 458 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
3831, 37sylan2b 596 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
3938ralrimiva 3113 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
40 breq2 5040 . . . . . . . . . 10 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
4140ralbidv 3126 . . . . . . . . 9 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
4241rspcev 3543 . . . . . . . 8 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
4313, 39, 42syl2anc 587 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
44 suprzcl 12114 . . . . . . 7 ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇)
459, 30, 43, 44syl3anc 1368 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ 𝑇)
468, 45sseldi 3892 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
47 znq 12405 . . . . 5 ((sup(𝑇, ℝ, < ) ∈ ℤ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ∈ ℚ)
4846, 47sylancom 591 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ∈ ℚ)
49 eqid 2758 . . . 4 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
5048, 49fmptd 6875 . . 3 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)):ℕ⟶ℚ)
51 rpnnen1lem.q . . . 4 ℚ ∈ V
5251, 1elmap 8466 . . 3 ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ (ℚ ↑m ℕ) ↔ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)):ℕ⟶ℚ)
5350, 52sylibr 237 . 2 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ (ℚ ↑m ℕ))
545, 53eqeltrd 2852 1 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  wss 3860  c0 4227   class class class wbr 5036  cmpt 5116  wf 6336  cfv 6340  (class class class)co 7156  m cmap 8422  supcsup 8950  cr 10587  0cc0 10588   · cmul 10593   < clt 10726  cle 10727   / cdiv 11348  cn 11687  cz 12033  cq 12401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-n0 11948  df-z 12034  df-q 12402
This theorem is referenced by:  rpnnen1lem3  12432  rpnnen1lem4  12433  rpnnen1lem5  12434  rpnnen1lem6  12435
  Copyright terms: Public domain W3C validator