| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprirred | Structured version Visualization version GIF version | ||
| Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprirred.1 | ⊢ 𝑆 = (oppr‘𝑅) |
| opprirred.2 | ⊢ 𝐼 = (Irred‘𝑅) |
| Ref | Expression |
|---|---|
| opprirred | ⊢ 𝐼 = (Irred‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3268 | . . . . 5 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) | |
| 2 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2734 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | opprirred.1 | . . . . . . . 8 ⊢ 𝑆 = (oppr‘𝑅) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 6 | 2, 3, 4, 5 | opprmul 20285 | . . . . . . 7 ⊢ (𝑦(.r‘𝑆)𝑧) = (𝑧(.r‘𝑅)𝑦) |
| 7 | 6 | neeq1i 2995 | . . . . . 6 ⊢ ((𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
| 8 | 7 | 2ralbii 3113 | . . . . 5 ⊢ (∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
| 9 | 1, 8 | bitr4i 278 | . . . 4 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥) |
| 10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
| 11 | eqid 2734 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 12 | opprirred.2 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
| 13 | eqid 2734 | . . . 4 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
| 14 | 2, 11, 12, 13, 3 | isirred 20364 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥)) |
| 15 | 4, 2 | opprbas 20288 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑆) |
| 16 | 11, 4 | opprunit 20322 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑆) |
| 17 | eqid 2734 | . . . 4 ⊢ (Irred‘𝑆) = (Irred‘𝑆) | |
| 18 | 15, 16, 17, 13, 5 | isirred 20364 | . . 3 ⊢ (𝑥 ∈ (Irred‘𝑆) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
| 19 | 10, 14, 18 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Irred‘𝑆)) |
| 20 | 19 | eqriv 2731 | 1 ⊢ 𝐼 = (Irred‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3921 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 .rcmulr 17257 opprcoppr 20281 Unitcui 20300 Irredcir 20301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-plusg 17269 df-mulr 17270 df-0g 17440 df-mgp 20086 df-ur 20127 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-irred 20304 |
| This theorem is referenced by: irredlmul 20373 |
| Copyright terms: Public domain | W3C validator |