![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprirred | Structured version Visualization version GIF version |
Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
opprirred.1 | β’ π = (opprβπ ) |
opprirred.2 | β’ πΌ = (Irredβπ ) |
Ref | Expression |
---|---|
opprirred | β’ πΌ = (Irredβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3287 | . . . . 5 β’ (βπ§ β ((Baseβπ ) β (Unitβπ ))βπ¦ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯ β βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯) | |
2 | eqid 2733 | . . . . . . . 8 β’ (Baseβπ ) = (Baseβπ ) | |
3 | eqid 2733 | . . . . . . . 8 β’ (.rβπ ) = (.rβπ ) | |
4 | opprirred.1 | . . . . . . . 8 β’ π = (opprβπ ) | |
5 | eqid 2733 | . . . . . . . 8 β’ (.rβπ) = (.rβπ) | |
6 | 2, 3, 4, 5 | opprmul 20153 | . . . . . . 7 β’ (π¦(.rβπ)π§) = (π§(.rβπ )π¦) |
7 | 6 | neeq1i 3006 | . . . . . 6 β’ ((π¦(.rβπ)π§) β π₯ β (π§(.rβπ )π¦) β π₯) |
8 | 7 | 2ralbii 3129 | . . . . 5 β’ (βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π¦(.rβπ)π§) β π₯ β βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯) |
9 | 1, 8 | bitr4i 278 | . . . 4 β’ (βπ§ β ((Baseβπ ) β (Unitβπ ))βπ¦ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯ β βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π¦(.rβπ)π§) β π₯) |
10 | 9 | anbi2i 624 | . . 3 β’ ((π₯ β ((Baseβπ ) β (Unitβπ )) β§ βπ§ β ((Baseβπ ) β (Unitβπ ))βπ¦ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯) β (π₯ β ((Baseβπ ) β (Unitβπ )) β§ βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π¦(.rβπ)π§) β π₯)) |
11 | eqid 2733 | . . . 4 β’ (Unitβπ ) = (Unitβπ ) | |
12 | opprirred.2 | . . . 4 β’ πΌ = (Irredβπ ) | |
13 | eqid 2733 | . . . 4 β’ ((Baseβπ ) β (Unitβπ )) = ((Baseβπ ) β (Unitβπ )) | |
14 | 2, 11, 12, 13, 3 | isirred 20233 | . . 3 β’ (π₯ β πΌ β (π₯ β ((Baseβπ ) β (Unitβπ )) β§ βπ§ β ((Baseβπ ) β (Unitβπ ))βπ¦ β ((Baseβπ ) β (Unitβπ ))(π§(.rβπ )π¦) β π₯)) |
15 | 4, 2 | opprbas 20157 | . . . 4 β’ (Baseβπ ) = (Baseβπ) |
16 | 11, 4 | opprunit 20191 | . . . 4 β’ (Unitβπ ) = (Unitβπ) |
17 | eqid 2733 | . . . 4 β’ (Irredβπ) = (Irredβπ) | |
18 | 15, 16, 17, 13, 5 | isirred 20233 | . . 3 β’ (π₯ β (Irredβπ) β (π₯ β ((Baseβπ ) β (Unitβπ )) β§ βπ¦ β ((Baseβπ ) β (Unitβπ ))βπ§ β ((Baseβπ ) β (Unitβπ ))(π¦(.rβπ)π§) β π₯)) |
19 | 10, 14, 18 | 3bitr4i 303 | . 2 β’ (π₯ β πΌ β π₯ β (Irredβπ)) |
20 | 19 | eqriv 2730 | 1 β’ πΌ = (Irredβπ) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 β cdif 3946 βcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 opprcoppr 20149 Unitcui 20169 Irredcir 20170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-0g 17387 df-mgp 19988 df-ur 20005 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-irred 20173 |
This theorem is referenced by: irredlmul 20242 |
Copyright terms: Public domain | W3C validator |