Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprirred | Structured version Visualization version GIF version |
Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
opprirred.1 | ⊢ 𝑆 = (oppr‘𝑅) |
opprirred.2 | ⊢ 𝐼 = (Irred‘𝑅) |
Ref | Expression |
---|---|
opprirred | ⊢ 𝐼 = (Irred‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3260 | . . . . 5 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) | |
2 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | opprirred.1 | . . . . . . . 8 ⊢ 𝑆 = (oppr‘𝑅) | |
5 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
6 | 2, 3, 4, 5 | opprmul 19893 | . . . . . . 7 ⊢ (𝑦(.r‘𝑆)𝑧) = (𝑧(.r‘𝑅)𝑦) |
7 | 6 | neeq1i 3003 | . . . . . 6 ⊢ ((𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
8 | 7 | 2ralbii 3121 | . . . . 5 ⊢ (∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
9 | 1, 8 | bitr4i 277 | . . . 4 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥) |
10 | 9 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
11 | eqid 2733 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
12 | opprirred.2 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
13 | eqid 2733 | . . . 4 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
14 | 2, 11, 12, 13, 3 | isirred 19969 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥)) |
15 | 4, 2 | opprbas 19897 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑆) |
16 | 11, 4 | opprunit 19931 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑆) |
17 | eqid 2733 | . . . 4 ⊢ (Irred‘𝑆) = (Irred‘𝑆) | |
18 | 15, 16, 17, 13, 5 | isirred 19969 | . . 3 ⊢ (𝑥 ∈ (Irred‘𝑆) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
19 | 10, 14, 18 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Irred‘𝑆)) |
20 | 19 | eqriv 2730 | 1 ⊢ 𝐼 = (Irred‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 ∖ cdif 3886 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 .rcmulr 16991 opprcoppr 19889 Unitcui 19909 Irredcir 19910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-plusg 17003 df-mulr 17004 df-0g 17180 df-mgp 19749 df-ur 19766 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-irred 19913 |
This theorem is referenced by: irredlmul 19978 |
Copyright terms: Public domain | W3C validator |