| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprirred | Structured version Visualization version GIF version | ||
| Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprirred.1 | ⊢ 𝑆 = (oppr‘𝑅) |
| opprirred.2 | ⊢ 𝐼 = (Irred‘𝑅) |
| Ref | Expression |
|---|---|
| opprirred | ⊢ 𝐼 = (Irred‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3265 | . . . . 5 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) | |
| 2 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | opprirred.1 | . . . . . . . 8 ⊢ 𝑆 = (oppr‘𝑅) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 6 | 2, 3, 4, 5 | opprmul 20249 | . . . . . . 7 ⊢ (𝑦(.r‘𝑆)𝑧) = (𝑧(.r‘𝑅)𝑦) |
| 7 | 6 | neeq1i 2989 | . . . . . 6 ⊢ ((𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
| 8 | 7 | 2ralbii 3108 | . . . . 5 ⊢ (∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) |
| 9 | 1, 8 | bitr4i 278 | . . . 4 ⊢ (∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥 ↔ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥) |
| 10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
| 11 | eqid 2729 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 12 | opprirred.2 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
| 13 | eqid 2729 | . . . 4 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
| 14 | 2, 11, 12, 13, 3 | isirred 20328 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑧(.r‘𝑅)𝑦) ≠ 𝑥)) |
| 15 | 4, 2 | opprbas 20252 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑆) |
| 16 | 11, 4 | opprunit 20286 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑆) |
| 17 | eqid 2729 | . . . 4 ⊢ (Irred‘𝑆) = (Irred‘𝑆) | |
| 18 | 15, 16, 17, 13, 5 | isirred 20328 | . . 3 ⊢ (𝑥 ∈ (Irred‘𝑆) ↔ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑧 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑦(.r‘𝑆)𝑧) ≠ 𝑥)) |
| 19 | 10, 14, 18 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (Irred‘𝑆)) |
| 20 | 19 | eqriv 2726 | 1 ⊢ 𝐼 = (Irred‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 opprcoppr 20245 Unitcui 20264 Irredcir 20265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgp 20050 df-ur 20091 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-irred 20268 |
| This theorem is referenced by: irredlmul 20337 |
| Copyright terms: Public domain | W3C validator |