Proof of Theorem nelsubc3lem
| Step | Hyp | Ref
| Expression |
| 1 | | nelsubc3lem.c |
. 2
⊢ 𝐶 ∈ Cat |
| 2 | | nelsubc3lem.1 |
. . 3
⊢ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 3 | | nelsubc3lem.s |
. . . 4
⊢ 𝑆 ∈ V |
| 4 | | id 22 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) |
| 5 | 4 | sqxpeqd 5684 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
| 6 | 5 | fneq2d 6629 |
. . . . 5
⊢ (𝑠 = 𝑆 → (𝐽 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑆 × 𝑆))) |
| 7 | | raleq 3300 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 8 | 7 | notbid 318 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 9 | | raleq 3300 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 10 | 9 | raleqbi1dv 3315 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 11 | 10 | raleqbi1dv 3315 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 12 | 8, 11 | anbi12d 632 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 13 | 12 | anbi2d 630 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 14 | 6, 13 | anbi12d 632 |
. . . 4
⊢ (𝑠 = 𝑆 → ((𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) ↔ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))) |
| 15 | 3, 14 | spcev 3583 |
. . 3
⊢ ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) → ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 16 | | nelsubc3lem.j |
. . . 4
⊢ 𝐽 ∈ V |
| 17 | | fneq1 6626 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑠 × 𝑠))) |
| 18 | | breq1 5120 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (𝑗 ⊆cat
(Homf ‘𝐶) ↔ 𝐽 ⊆cat
(Homf ‘𝐶))) |
| 19 | | oveq 7406 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑥𝑗𝑥) = (𝑥𝐽𝑥)) |
| 20 | 19 | eleq2d 2819 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 21 | 20 | ralbidv 3161 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 22 | 21 | notbid 318 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 23 | | oveq 7406 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (𝑥𝑗𝑦) = (𝑥𝐽𝑦)) |
| 24 | | oveq 7406 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑦𝑗𝑧) = (𝑦𝐽𝑧)) |
| 25 | | oveq 7406 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (𝑥𝑗𝑧) = (𝑥𝐽𝑧)) |
| 26 | 25 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 27 | 24, 26 | raleqbidv 3323 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 28 | 23, 27 | raleqbidv 3323 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 29 | 28 | 3ralbidv 3206 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 30 | 22, 29 | anbi12d 632 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 31 | 18, 30 | anbi12d 632 |
. . . . . 6
⊢ (𝑗 = 𝐽 → ((𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 32 | 17, 31 | anbi12d 632 |
. . . . 5
⊢ (𝑗 = 𝐽 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ (𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))) |
| 33 | 32 | exbidv 1920 |
. . . 4
⊢ (𝑗 = 𝐽 → (∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))) |
| 34 | 16, 33 | spcev 3583 |
. . 3
⊢
(∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) → ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))) |
| 35 | 2, 15, 34 | mp2b 10 |
. 2
⊢
∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| 36 | | fveq2 6873 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Homf ‘𝑐) = (Homf
‘𝐶)) |
| 37 | 36 | breq2d 5129 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑗 ⊆cat
(Homf ‘𝑐) ↔ 𝑗 ⊆cat
(Homf ‘𝐶))) |
| 38 | | fveq2 6873 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) |
| 39 | 38 | fveq1d 6875 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ((Id‘𝐶)‘𝑥)) |
| 40 | 39 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 41 | 40 | ralbidv 3161 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 42 | 41 | notbid 318 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 43 | | fveq2 6873 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶)) |
| 44 | 43 | oveqd 7417 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → (〈𝑥, 𝑦〉(comp‘𝑐)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐶)𝑧)) |
| 45 | 44 | oveqd 7417 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
| 46 | 45 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → ((𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) |
| 47 | 46 | ralbidv 3161 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) |
| 48 | 47 | 4ralbidv 3207 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) |
| 49 | 42, 48 | anbi12d 632 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| 50 | 37, 49 | anbi12d 632 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑗 ⊆cat
(Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))) |
| 51 | 50 | anbi2d 630 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ (𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))))) |
| 52 | 51 | 2exbidv 1923 |
. . 3
⊢ (𝑐 = 𝐶 → (∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))))) |
| 53 | 52 | rspcev 3599 |
. 2
⊢ ((𝐶 ∈ Cat ∧ ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))) → ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))) |
| 54 | 1, 35, 53 | mp2an 692 |
1
⊢
∃𝑐 ∈ Cat
∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |