Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubc3lem Structured version   Visualization version   GIF version

Theorem nelsubc3lem 48931
Description: Lemma for nelsubc3 48932. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc3lem.c 𝐶 ∈ Cat
nelsubc3lem.j 𝐽 ∈ V
nelsubc3lem.s 𝑆 ∈ V
nelsubc3lem.1 (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
Assertion
Ref Expression
nelsubc3lem 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
Distinct variable groups:   𝐶,𝑐,𝑓,𝑗,𝑠   𝐶,𝑔,𝑐,𝑗,𝑠   𝑥,𝐶,𝑐,𝑗,𝑠   𝑦,𝐶,𝑐,𝑗,𝑠   𝑧,𝐶,𝑐,𝑗,𝑠   𝑓,𝐽,𝑗,𝑠   𝑔,𝐽   𝑥,𝐽   𝑦,𝐽   𝑧,𝐽   𝑆,𝑠,𝑥   𝑦,𝑆   𝑧,𝑆
Allowed substitution hints:   𝑆(𝑓,𝑔,𝑗,𝑐)   𝐽(𝑐)

Proof of Theorem nelsubc3lem
StepHypRef Expression
1 nelsubc3lem.c . 2 𝐶 ∈ Cat
2 nelsubc3lem.1 . . 3 (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
3 nelsubc3lem.s . . . 4 𝑆 ∈ V
4 id 22 . . . . . . 7 (𝑠 = 𝑆𝑠 = 𝑆)
54sqxpeqd 5684 . . . . . 6 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
65fneq2d 6629 . . . . 5 (𝑠 = 𝑆 → (𝐽 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑆 × 𝑆)))
7 raleq 3300 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
87notbid 318 . . . . . . 7 (𝑠 = 𝑆 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
9 raleq 3300 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
109raleqbi1dv 3315 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
1110raleqbi1dv 3315 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
128, 11anbi12d 632 . . . . . 6 (𝑠 = 𝑆 → ((¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
1312anbi2d 630 . . . . 5 (𝑠 = 𝑆 → ((𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) ↔ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
146, 13anbi12d 632 . . . 4 (𝑠 = 𝑆 → ((𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) ↔ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
153, 14spcev 3583 . . 3 ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) → ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
16 nelsubc3lem.j . . . 4 𝐽 ∈ V
17 fneq1 6626 . . . . . 6 (𝑗 = 𝐽 → (𝑗 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑠 × 𝑠)))
18 breq1 5120 . . . . . . 7 (𝑗 = 𝐽 → (𝑗cat (Homf𝐶) ↔ 𝐽cat (Homf𝐶)))
19 oveq 7406 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
2019eleq2d 2819 . . . . . . . . . 10 (𝑗 = 𝐽 → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
2120ralbidv 3161 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
2221notbid 318 . . . . . . . 8 (𝑗 = 𝐽 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
23 oveq 7406 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑥𝑗𝑦) = (𝑥𝐽𝑦))
24 oveq 7406 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
25 oveq 7406 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝑥𝑗𝑧) = (𝑥𝐽𝑧))
2625eleq2d 2819 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
2724, 26raleqbidv 3323 . . . . . . . . . 10 (𝑗 = 𝐽 → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
2823, 27raleqbidv 3323 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
29283ralbidv 3206 . . . . . . . 8 (𝑗 = 𝐽 → (∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
3022, 29anbi12d 632 . . . . . . 7 (𝑗 = 𝐽 → ((¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
3118, 30anbi12d 632 . . . . . 6 (𝑗 = 𝐽 → ((𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
3217, 31anbi12d 632 . . . . 5 (𝑗 = 𝐽 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ (𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
3332exbidv 1920 . . . 4 (𝑗 = 𝐽 → (∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
3416, 33spcev 3583 . . 3 (∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) → ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))))
352, 15, 34mp2b 10 . 2 𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
36 fveq2 6873 . . . . . . 7 (𝑐 = 𝐶 → (Homf𝑐) = (Homf𝐶))
3736breq2d 5129 . . . . . 6 (𝑐 = 𝐶 → (𝑗cat (Homf𝑐) ↔ 𝑗cat (Homf𝐶)))
38 fveq2 6873 . . . . . . . . . . 11 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
3938fveq1d 6875 . . . . . . . . . 10 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ((Id‘𝐶)‘𝑥))
4039eleq1d 2818 . . . . . . . . 9 (𝑐 = 𝐶 → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
4140ralbidv 3161 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
4241notbid 318 . . . . . . 7 (𝑐 = 𝐶 → (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
43 fveq2 6873 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
4443oveqd 7417 . . . . . . . . . . 11 (𝑐 = 𝐶 → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
4544oveqd 7417 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
4645eleq1d 2818 . . . . . . . . 9 (𝑐 = 𝐶 → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))
4746ralbidv 3161 . . . . . . . 8 (𝑐 = 𝐶 → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))
48474ralbidv 3207 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))
4942, 48anbi12d 632 . . . . . 6 (𝑐 = 𝐶 → ((¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
5037, 49anbi12d 632 . . . . 5 (𝑐 = 𝐶 → ((𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))))
5150anbi2d 630 . . . 4 (𝑐 = 𝐶 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ (𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))))
52512exbidv 1923 . . 3 (𝑐 = 𝐶 → (∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) ↔ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))))
5352rspcev 3599 . 2 ((𝐶 ∈ Cat ∧ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))) → ∃𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))))
541, 35, 53mp2an 692 1 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3050  wrex 3059  Vcvv 3457  cop 4605   class class class wbr 5117   × cxp 5650   Fn wfn 6523  cfv 6528  (class class class)co 7400  compcco 17270  Catccat 17663  Idccid 17664  Homf chomf 17665  cat cssc 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fn 6531  df-fv 6536  df-ov 7403
This theorem is referenced by:  nelsubc3  48932
  Copyright terms: Public domain W3C validator