Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubc2 Structured version   Visualization version   GIF version

Theorem nelsubc2 49064
Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
nelsubc.b 𝐵 = (Base‘𝐶)
nelsubc.s (𝜑𝑆𝐵)
nelsubc.0 (𝜑𝑆 ≠ ∅)
nelsubc.j (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
nelsubc2.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
nelsubc2 (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶))

Proof of Theorem nelsubc2
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nelsubc.b . . . . 5 𝐵 = (Base‘𝐶)
2 nelsubc.s . . . . 5 (𝜑𝑆𝐵)
3 nelsubc.0 . . . . 5 (𝜑𝑆 ≠ ∅)
4 nelsubc.j . . . . 5 (𝜑𝐽 = ((𝑆 × 𝑆) × {∅}))
5 eqid 2729 . . . . 5 (Homf𝐶) = (Homf𝐶)
6 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
7 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
81, 2, 3, 4, 5, 6, 7nelsubc 49063 . . . 4 (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
98simprrd 773 . . 3 (𝜑 → (¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
109simpld 494 . 2 (𝜑 → ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))
11 nelsubc2.c . . . . . 6 (𝜑𝐶 ∈ Cat)
128simpld 494 . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
135, 6, 7, 11, 12issubc2 17743 . . . . 5 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
1413simplbda 499 . . . 4 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
15 r19.26 3089 . . . 4 (∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
1614, 15sylib 218 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → (∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
1716simpld 494 . 2 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))
1810, 17mtand 815 1 (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903  c0 4284  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  Basecbs 17120  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-homf 17576  df-ssc 17717  df-subc 17719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator