| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc2 | Structured version Visualization version GIF version | ||
| Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| nelsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| nelsubc.0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| nelsubc.j | ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| nelsubc2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| nelsubc2 | ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | nelsubc.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | nelsubc.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 4 | nelsubc.j | . . . . 5 ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nelsubc 49050 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 8 | simprrd 773 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 10 | 9 | simpld 494 | . 2 ⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 11 | nelsubc2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 13 | 5, 6, 7, 11, 12 | issubc2 17778 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 14 | 13 | simplbda 499 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 15 | r19.26 3091 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 17 | 16 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 18 | 10, 17 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3911 ∅c0 4292 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 compcco 17208 Catccat 17605 Idccid 17606 Homf chomf 17607 ⊆cat cssc 17749 Subcatcsubc 17751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-pm 8779 df-ixp 8848 df-homf 17611 df-ssc 17752 df-subc 17754 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |