| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc2 | Structured version Visualization version GIF version | ||
| Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| nelsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| nelsubc.0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| nelsubc.j | ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| nelsubc2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| nelsubc2 | ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | nelsubc.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | nelsubc.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 4 | nelsubc.j | . . . . 5 ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) | |
| 5 | eqid 2734 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | eqid 2734 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 7 | eqid 2734 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nelsubc 48929 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 8 | simprrd 773 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 10 | 9 | simpld 494 | . 2 ⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 11 | nelsubc2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 13 | 5, 6, 7, 11, 12 | issubc2 17836 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 14 | 13 | simplbda 499 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 15 | r19.26 3097 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 17 | 16 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 18 | 10, 17 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ⊆ wss 3924 ∅c0 4306 {csn 4599 〈cop 4605 class class class wbr 5117 × cxp 5650 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 compcco 17270 Catccat 17663 Idccid 17664 Homf chomf 17665 ⊆cat cssc 17807 Subcatcsubc 17809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-pm 8838 df-ixp 8907 df-homf 17669 df-ssc 17810 df-subc 17812 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |