| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc2 | Structured version Visualization version GIF version | ||
| Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| nelsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| nelsubc.0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| nelsubc.j | ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| nelsubc2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| nelsubc2 | ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | nelsubc.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | nelsubc.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 4 | nelsubc.j | . . . . 5 ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nelsubc 49179 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 8 | simprrd 773 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 10 | 9 | simpld 494 | . 2 ⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 11 | nelsubc2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 13 | 5, 6, 7, 11, 12 | issubc2 17743 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 14 | 13 | simplbda 499 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 15 | r19.26 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 17 | 16 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 18 | 10, 17 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 {csn 4573 〈cop 4579 class class class wbr 5089 × cxp 5612 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 Subcatcsubc 17716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-pm 8753 df-ixp 8822 df-homf 17576 df-ssc 17717 df-subc 17719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |