| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc2 | Structured version Visualization version GIF version | ||
| Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| nelsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| nelsubc.0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| nelsubc.j | ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) |
| nelsubc2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| nelsubc2 | ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | nelsubc.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | nelsubc.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 4 | nelsubc.j | . . . . 5 ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nelsubc 49047 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 8 | simprrd 773 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 10 | 9 | simpld 494 | . 2 ⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 11 | nelsubc2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 13 | 5, 6, 7, 11, 12 | issubc2 17804 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 14 | 13 | simplbda 499 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 15 | r19.26 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) | |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → (∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 17 | 16 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 18 | 10, 17 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3916 ∅c0 4298 {csn 4591 〈cop 4597 class class class wbr 5109 × cxp 5638 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 compcco 17238 Catccat 17631 Idccid 17632 Homf chomf 17633 ⊆cat cssc 17775 Subcatcsubc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-pm 8804 df-ixp 8873 df-homf 17637 df-ssc 17778 df-subc 17780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |