| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc3 | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17754 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17791). To construct such a category, see setc1onsubc 49584 and cnelsubc 49586. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc3 | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8422 | . . 3 ⊢ 2o ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ (SetCat‘2o) = (SetCat‘2o) | |
| 3 | 2 | setccat 18027 | . . 3 ⊢ (2o ∈ V → (SetCat‘2o) ∈ Cat) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (SetCat‘2o) ∈ Cat |
| 5 | 1oex 8421 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5, 5 | xpex 7709 | . . 3 ⊢ (1o × 1o) ∈ V |
| 7 | p0ex 5334 | . . 3 ⊢ {∅} ∈ V | |
| 8 | 6, 7 | xpex 7709 | . 2 ⊢ ((1o × 1o) × {∅}) ∈ V |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2o ∈ V) |
| 10 | 2, 9 | setcbas 18020 | . . . . 5 ⊢ (⊤ → 2o = (Base‘(SetCat‘2o))) |
| 11 | 10 | mptru 1547 | . . . 4 ⊢ 2o = (Base‘(SetCat‘2o)) |
| 12 | 2on0 8425 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 13 | 2on 8424 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 14 | 13 | onordi 6433 | . . . . . . 7 ⊢ Ord 2o |
| 15 | ordge1n0 8435 | . . . . . . 7 ⊢ (Ord 2o → (1o ⊆ 2o ↔ 2o ≠ ∅)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (1o ⊆ 2o ↔ 2o ≠ ∅) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ⊆ 2o) |
| 19 | 1n0 8429 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ≠ ∅) |
| 21 | eqidd 2730 | . . . 4 ⊢ (⊤ → ((1o × 1o) × {∅}) = ((1o × 1o) × {∅})) | |
| 22 | eqid 2729 | . . . 4 ⊢ (Homf ‘(SetCat‘2o)) = (Homf ‘(SetCat‘2o)) | |
| 23 | 11, 18, 20, 21, 22 | nelsubclem 49049 | . . 3 ⊢ (⊤ → (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧))))) |
| 24 | 23 | mptru 1547 | . 2 ⊢ (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧)))) |
| 25 | 4, 8, 5, 24 | nelsubc3lem 49052 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 Ord word 6319 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 2oc2o 8405 Basecbs 17155 compcco 17208 Catccat 17605 Idccid 17606 Homf chomf 17607 ⊆cat cssc 17749 SetCatcsetc 18017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17609 df-cid 17610 df-homf 17611 df-ssc 17752 df-setc 18018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |