| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc3 | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17780 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17817). To construct such a category, see setc1onsubc 49581 and cnelsubc 49583. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc3 | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8447 | . . 3 ⊢ 2o ∈ V | |
| 2 | eqid 2730 | . . . 4 ⊢ (SetCat‘2o) = (SetCat‘2o) | |
| 3 | 2 | setccat 18053 | . . 3 ⊢ (2o ∈ V → (SetCat‘2o) ∈ Cat) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (SetCat‘2o) ∈ Cat |
| 5 | 1oex 8446 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5, 5 | xpex 7731 | . . 3 ⊢ (1o × 1o) ∈ V |
| 7 | p0ex 5341 | . . 3 ⊢ {∅} ∈ V | |
| 8 | 6, 7 | xpex 7731 | . 2 ⊢ ((1o × 1o) × {∅}) ∈ V |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2o ∈ V) |
| 10 | 2, 9 | setcbas 18046 | . . . . 5 ⊢ (⊤ → 2o = (Base‘(SetCat‘2o))) |
| 11 | 10 | mptru 1547 | . . . 4 ⊢ 2o = (Base‘(SetCat‘2o)) |
| 12 | 2on0 8450 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 13 | 2on 8449 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 14 | 13 | onordi 6447 | . . . . . . 7 ⊢ Ord 2o |
| 15 | ordge1n0 8460 | . . . . . . 7 ⊢ (Ord 2o → (1o ⊆ 2o ↔ 2o ≠ ∅)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (1o ⊆ 2o ↔ 2o ≠ ∅) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ⊆ 2o) |
| 19 | 1n0 8454 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ≠ ∅) |
| 21 | eqidd 2731 | . . . 4 ⊢ (⊤ → ((1o × 1o) × {∅}) = ((1o × 1o) × {∅})) | |
| 22 | eqid 2730 | . . . 4 ⊢ (Homf ‘(SetCat‘2o)) = (Homf ‘(SetCat‘2o)) | |
| 23 | 11, 18, 20, 21, 22 | nelsubclem 49046 | . . 3 ⊢ (⊤ → (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧))))) |
| 24 | 23 | mptru 1547 | . 2 ⊢ (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧)))) |
| 25 | 4, 8, 5, 24 | nelsubc3lem 49049 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 {csn 4591 〈cop 4597 class class class wbr 5109 × cxp 5638 Ord word 6333 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 1oc1o 8429 2oc2o 8430 Basecbs 17185 compcco 17238 Catccat 17631 Idccid 17632 Homf chomf 17633 ⊆cat cssc 17775 SetCatcsetc 18043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-ssc 17778 df-setc 18044 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |