| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc3 | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17719 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17756). To construct such a category, see setc1onsubc 49713 and cnelsubc 49715. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc3 | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8396 | . . 3 ⊢ 2o ∈ V | |
| 2 | eqid 2731 | . . . 4 ⊢ (SetCat‘2o) = (SetCat‘2o) | |
| 3 | 2 | setccat 17992 | . . 3 ⊢ (2o ∈ V → (SetCat‘2o) ∈ Cat) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (SetCat‘2o) ∈ Cat |
| 5 | 1oex 8395 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5, 5 | xpex 7686 | . . 3 ⊢ (1o × 1o) ∈ V |
| 7 | p0ex 5320 | . . 3 ⊢ {∅} ∈ V | |
| 8 | 6, 7 | xpex 7686 | . 2 ⊢ ((1o × 1o) × {∅}) ∈ V |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2o ∈ V) |
| 10 | 2, 9 | setcbas 17985 | . . . . 5 ⊢ (⊤ → 2o = (Base‘(SetCat‘2o))) |
| 11 | 10 | mptru 1548 | . . . 4 ⊢ 2o = (Base‘(SetCat‘2o)) |
| 12 | 2on0 8399 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 13 | 2on 8398 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 14 | 13 | onordi 6419 | . . . . . . 7 ⊢ Ord 2o |
| 15 | ordge1n0 8409 | . . . . . . 7 ⊢ (Ord 2o → (1o ⊆ 2o ↔ 2o ≠ ∅)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (1o ⊆ 2o ↔ 2o ≠ ∅) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ⊆ 2o) |
| 19 | 1n0 8403 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ≠ ∅) |
| 21 | eqidd 2732 | . . . 4 ⊢ (⊤ → ((1o × 1o) × {∅}) = ((1o × 1o) × {∅})) | |
| 22 | eqid 2731 | . . . 4 ⊢ (Homf ‘(SetCat‘2o)) = (Homf ‘(SetCat‘2o)) | |
| 23 | 11, 18, 20, 21, 22 | nelsubclem 49178 | . . 3 ⊢ (⊤ → (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧))))) |
| 24 | 23 | mptru 1548 | . 2 ⊢ (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧)))) |
| 25 | 4, 8, 5, 24 | nelsubc3lem 49181 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 {csn 4573 〈cop 4579 class class class wbr 5089 × cxp 5612 Ord word 6305 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 2oc2o 8379 Basecbs 17120 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 SetCatcsetc 17982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-setc 17983 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |