| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc3 | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17719 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17756). To construct such a category, see setc1onsubc 49597 and cnelsubc 49599. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc3 | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8399 | . . 3 ⊢ 2o ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ (SetCat‘2o) = (SetCat‘2o) | |
| 3 | 2 | setccat 17992 | . . 3 ⊢ (2o ∈ V → (SetCat‘2o) ∈ Cat) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (SetCat‘2o) ∈ Cat |
| 5 | 1oex 8398 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5, 5 | xpex 7689 | . . 3 ⊢ (1o × 1o) ∈ V |
| 7 | p0ex 5323 | . . 3 ⊢ {∅} ∈ V | |
| 8 | 6, 7 | xpex 7689 | . 2 ⊢ ((1o × 1o) × {∅}) ∈ V |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2o ∈ V) |
| 10 | 2, 9 | setcbas 17985 | . . . . 5 ⊢ (⊤ → 2o = (Base‘(SetCat‘2o))) |
| 11 | 10 | mptru 1547 | . . . 4 ⊢ 2o = (Base‘(SetCat‘2o)) |
| 12 | 2on0 8402 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 13 | 2on 8401 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 14 | 13 | onordi 6420 | . . . . . . 7 ⊢ Ord 2o |
| 15 | ordge1n0 8412 | . . . . . . 7 ⊢ (Ord 2o → (1o ⊆ 2o ↔ 2o ≠ ∅)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (1o ⊆ 2o ↔ 2o ≠ ∅) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ⊆ 2o) |
| 19 | 1n0 8406 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ≠ ∅) |
| 21 | eqidd 2730 | . . . 4 ⊢ (⊤ → ((1o × 1o) × {∅}) = ((1o × 1o) × {∅})) | |
| 22 | eqid 2729 | . . . 4 ⊢ (Homf ‘(SetCat‘2o)) = (Homf ‘(SetCat‘2o)) | |
| 23 | 11, 18, 20, 21, 22 | nelsubclem 49062 | . . 3 ⊢ (⊤ → (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧))))) |
| 24 | 23 | mptru 1547 | . 2 ⊢ (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧)))) |
| 25 | 4, 8, 5, 24 | nelsubc3lem 49065 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 {csn 4577 〈cop 4583 class class class wbr 5092 × cxp 5617 Ord word 6306 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 2oc2o 8382 Basecbs 17120 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 SetCatcsetc 17982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-setc 17983 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |