| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubc3 | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17812 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17849). To construct such a category, see setc1onsubc 49340 and cnelsubc 49342. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| nelsubc3 | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8486 | . . 3 ⊢ 2o ∈ V | |
| 2 | eqid 2734 | . . . 4 ⊢ (SetCat‘2o) = (SetCat‘2o) | |
| 3 | 2 | setccat 18085 | . . 3 ⊢ (2o ∈ V → (SetCat‘2o) ∈ Cat) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (SetCat‘2o) ∈ Cat |
| 5 | 1oex 8485 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5, 5 | xpex 7742 | . . 3 ⊢ (1o × 1o) ∈ V |
| 7 | p0ex 5352 | . . 3 ⊢ {∅} ∈ V | |
| 8 | 6, 7 | xpex 7742 | . 2 ⊢ ((1o × 1o) × {∅}) ∈ V |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2o ∈ V) |
| 10 | 2, 9 | setcbas 18078 | . . . . 5 ⊢ (⊤ → 2o = (Base‘(SetCat‘2o))) |
| 11 | 10 | mptru 1546 | . . . 4 ⊢ 2o = (Base‘(SetCat‘2o)) |
| 12 | 2on0 8491 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 13 | 2on 8489 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 14 | 13 | onordi 6462 | . . . . . . 7 ⊢ Ord 2o |
| 15 | ordge1n0 8501 | . . . . . . 7 ⊢ (Ord 2o → (1o ⊆ 2o ↔ 2o ≠ ∅)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (1o ⊆ 2o ↔ 2o ≠ ∅) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ⊆ 2o) |
| 19 | 1n0 8495 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1o ≠ ∅) |
| 21 | eqidd 2735 | . . . 4 ⊢ (⊤ → ((1o × 1o) × {∅}) = ((1o × 1o) × {∅})) | |
| 22 | eqid 2734 | . . . 4 ⊢ (Homf ‘(SetCat‘2o)) = (Homf ‘(SetCat‘2o)) | |
| 23 | 11, 18, 20, 21, 22 | nelsubclem 48928 | . . 3 ⊢ (⊤ → (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧))))) |
| 24 | 23 | mptru 1546 | . 2 ⊢ (((1o × 1o) × {∅}) Fn (1o × 1o) ∧ (((1o × 1o) × {∅}) ⊆cat (Homf ‘(SetCat‘2o)) ∧ (¬ ∀𝑥 ∈ 1o ((Id‘(SetCat‘2o))‘𝑥) ∈ (𝑥((1o × 1o) × {∅})𝑥) ∧ ∀𝑥 ∈ 1o ∀𝑦 ∈ 1o ∀𝑧 ∈ 1o ∀𝑓 ∈ (𝑥((1o × 1o) × {∅})𝑦)∀𝑔 ∈ (𝑦((1o × 1o) × {∅})𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(SetCat‘2o))𝑧)𝑓) ∈ (𝑥((1o × 1o) × {∅})𝑧)))) |
| 25 | 4, 8, 5, 24 | nelsubc3lem 48931 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 Vcvv 3457 ⊆ wss 3924 ∅c0 4306 {csn 4599 〈cop 4605 class class class wbr 5117 × cxp 5650 Ord word 6349 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 1oc1o 8468 2oc2o 8469 Basecbs 17215 compcco 17270 Catccat 17663 Idccid 17664 Homf chomf 17665 ⊆cat cssc 17807 SetCatcsetc 18075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-slot 17188 df-ndx 17200 df-base 17216 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-homf 17669 df-ssc 17810 df-setc 18076 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |