![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkid | Structured version Visualization version GIF version |
Description: The value of the tau function (in Lemma K of [Crawley] p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk5.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
Ref | Expression |
---|---|
cdlemkid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
2 | 1 | fvexi 6906 | . 2 ⊢ 𝑇 ∈ V |
3 | nfv 1910 | . . 3 ⊢ Ⅎ𝑏((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) | |
4 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑏𝐺 | |
5 | cdlemk5.x | . . . . . . 7 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
6 | nfra1 3277 | . . . . . . . 8 ⊢ Ⅎ𝑏∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) | |
7 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑏𝑇 | |
8 | 6, 7 | nfriota 7384 | . . . . . . 7 ⊢ Ⅎ𝑏(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
9 | 5, 8 | nfcxfr 2897 | . . . . . 6 ⊢ Ⅎ𝑏𝑋 |
10 | 4, 9 | nfcsbw 3917 | . . . . 5 ⊢ Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 |
11 | 10 | nfeq1 2914 | . . . 4 ⊢ Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵) |
12 | 11 | a1i 11 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
13 | cdlemk5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
14 | cdlemk5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
15 | cdlemk5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
16 | cdlemk5.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
17 | cdlemk5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
18 | cdlemk5.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
19 | cdlemk5.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | cdlemk5.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
21 | cdlemk5.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
22 | 13, 14, 15, 16, 17, 18, 1, 19, 20, 21, 5 | cdlemkid4 40402 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → 𝑧 = ( I ↾ 𝐵)))) |
23 | eqeq1 2732 | . . . 4 ⊢ (( I ↾ 𝐵) = ⦋𝐺 / 𝑔⦌𝑋 → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵))) | |
24 | 23 | adantl 481 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ ( I ↾ 𝐵) = ⦋𝐺 / 𝑔⦌𝑋) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵))) |
25 | eqidd 2729 | . . . 4 ⊢ ((𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
26 | 25 | a1i 11 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ((𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ( I ↾ 𝐵) = ( I ↾ 𝐵))) |
27 | 13, 14, 15, 16, 17, 18, 1, 19, 20, 21, 5 | cdlemkid5 40403 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
28 | 13, 18, 1, 19 | cdlemftr2 40034 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) |
29 | 28 | 3ad2ant1 1131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) |
30 | 3, 12, 22, 24, 26, 27, 29 | riotasv3d 38427 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑇 ∈ V) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
31 | 2, 30 | mpan2 690 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 Vcvv 3470 ⦋csb 3890 class class class wbr 5143 I cid 5570 ◡ccnv 5672 ↾ cres 5675 ∘ ccom 5677 ‘cfv 6543 ℩crio 7370 (class class class)co 7415 Basecbs 17174 lecple 17234 joincjn 18297 meetcmee 18298 Atomscatm 38730 HLchlt 38817 LHypclh 39452 LTrncltrn 39569 trLctrl 39626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-riotaBAD 38420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7988 df-2nd 7989 df-undef 8273 df-map 8841 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-p1 18412 df-lat 18418 df-clat 18485 df-oposet 38643 df-ol 38645 df-oml 38646 df-covers 38733 df-ats 38734 df-atl 38765 df-cvlat 38789 df-hlat 38818 df-llines 38966 df-lplanes 38967 df-lvols 38968 df-lines 38969 df-psubsp 38971 df-pmap 38972 df-padd 39264 df-lhyp 39456 df-laut 39457 df-ldil 39572 df-ltrn 39573 df-trl 39627 |
This theorem is referenced by: cdlemk35s-id 40406 cdlemk39s-id 40408 cdlemk53b 40424 cdlemk53 40425 |
Copyright terms: Public domain | W3C validator |