![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkid | Structured version Visualization version GIF version |
Description: The value of the tau function (in Lemma K of [Crawley] p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk5.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
Ref | Expression |
---|---|
cdlemkid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
2 | 1 | fvexi 6515 | . 2 ⊢ 𝑇 ∈ V |
3 | nfv 1873 | . . 3 ⊢ Ⅎ𝑏((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) | |
4 | nfcv 2932 | . . . . . 6 ⊢ Ⅎ𝑏𝐺 | |
5 | cdlemk5.x | . . . . . . 7 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
6 | nfra1 3169 | . . . . . . . 8 ⊢ Ⅎ𝑏∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) | |
7 | nfcv 2932 | . . . . . . . 8 ⊢ Ⅎ𝑏𝑇 | |
8 | 6, 7 | nfriota 6948 | . . . . . . 7 ⊢ Ⅎ𝑏(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
9 | 5, 8 | nfcxfr 2930 | . . . . . 6 ⊢ Ⅎ𝑏𝑋 |
10 | 4, 9 | nfcsb 3808 | . . . . 5 ⊢ Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 |
11 | 10 | nfeq1 2945 | . . . 4 ⊢ Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵) |
12 | 11 | a1i 11 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
13 | cdlemk5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
14 | cdlemk5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
15 | cdlemk5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
16 | cdlemk5.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
17 | cdlemk5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
18 | cdlemk5.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
19 | cdlemk5.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | cdlemk5.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
21 | cdlemk5.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
22 | 13, 14, 15, 16, 17, 18, 1, 19, 20, 21, 5 | cdlemkid4 37515 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) → 𝑧 = ( I ↾ 𝐵)))) |
23 | eqeq1 2782 | . . . 4 ⊢ (( I ↾ 𝐵) = ⦋𝐺 / 𝑔⦌𝑋 → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵))) | |
24 | 23 | adantl 474 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ ( I ↾ 𝐵) = ⦋𝐺 / 𝑔⦌𝑋) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵))) |
25 | eqidd 2779 | . . . 4 ⊢ ((𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
26 | 25 | a1i 11 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ((𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) → ( I ↾ 𝐵) = ( I ↾ 𝐵))) |
27 | 13, 14, 15, 16, 17, 18, 1, 19, 20, 21, 5 | cdlemkid5 37516 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
28 | 13, 18, 1, 19 | cdlemftr2 37147 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) |
29 | 28 | 3ad2ant1 1113 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) |
30 | 3, 12, 22, 24, 26, 27, 29 | riotasv3d 35541 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) ∧ 𝑇 ∈ V) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
31 | 2, 30 | mpan2 678 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 Ⅎwnf 1746 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ∃wrex 3089 Vcvv 3415 ⦋csb 3788 class class class wbr 4930 I cid 5312 ◡ccnv 5407 ↾ cres 5410 ∘ ccom 5412 ‘cfv 6190 ℩crio 6938 (class class class)co 6978 Basecbs 16342 lecple 16431 joincjn 17415 meetcmee 17416 Atomscatm 35844 HLchlt 35931 LHypclh 36565 LTrncltrn 36682 trLctrl 36739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-riotaBAD 35534 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-iun 4795 df-iin 4796 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-1st 7503 df-2nd 7504 df-undef 7744 df-map 8210 df-proset 17399 df-poset 17417 df-plt 17429 df-lub 17445 df-glb 17446 df-join 17447 df-meet 17448 df-p0 17510 df-p1 17511 df-lat 17517 df-clat 17579 df-oposet 35757 df-ol 35759 df-oml 35760 df-covers 35847 df-ats 35848 df-atl 35879 df-cvlat 35903 df-hlat 35932 df-llines 36079 df-lplanes 36080 df-lvols 36081 df-lines 36082 df-psubsp 36084 df-pmap 36085 df-padd 36377 df-lhyp 36569 df-laut 36570 df-ldil 36685 df-ltrn 36686 df-trl 36740 |
This theorem is referenced by: cdlemk35s-id 37519 cdlemk39s-id 37521 cdlemk53b 37537 cdlemk53 37538 |
Copyright terms: Public domain | W3C validator |