![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2s | Structured version Visualization version GIF version |
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5397) in the form of a substitution instance. Special case of riota2f 7397. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riotasv2s.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
Ref | Expression |
---|---|
riotasv2s | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1147 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → (𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑))) | |
2 | simp1 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐴 ∈ 𝑉) | |
3 | riotasv2s.2 | . . . . . 6 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
4 | nfra1 3272 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
5 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
6 | 4, 5 | nfriota 7385 | . . . . . 6 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
7 | 3, 6 | nfcxfr 2890 | . . . . 5 ⊢ Ⅎ𝑦𝐷 |
8 | 7 | nfel1 2909 | . . . 4 ⊢ Ⅎ𝑦 𝐷 ∈ 𝐴 |
9 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑦 𝐸 ∈ 𝐵 | |
10 | nfsbc1v 3788 | . . . . 5 ⊢ Ⅎ𝑦[𝐸 / 𝑦]𝜑 | |
11 | 9, 10 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑦(𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑) |
12 | 8, 11 | nfan 1894 | . . 3 ⊢ Ⅎ𝑦(𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) |
13 | nfcsb1v 3909 | . . . 4 ⊢ Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶 | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶) |
15 | 10 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑) |
16 | 3 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
17 | sbceq1a 3779 | . . . 4 ⊢ (𝑦 = 𝐸 → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) | |
18 | 17 | adantl 480 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) |
19 | csbeq1a 3898 | . . . 4 ⊢ (𝑦 = 𝐸 → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) | |
20 | 19 | adantl 480 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) |
21 | simpl 481 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 ∈ 𝐴) | |
22 | simprl 769 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐸 ∈ 𝐵) | |
23 | simprr 771 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑) | |
24 | 12, 14, 15, 16, 18, 20, 21, 22, 23 | riotasv2d 38485 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝐴 ∈ 𝑉) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
25 | 1, 2, 24 | syl2anc 582 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3051 [wsbc 3768 ⦋csb 3884 ℩crio 7371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-riotaBAD 38481 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7372 df-undef 8277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |