Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Visualization version   GIF version

Theorem riotasv2s 38951
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5358) in the form of a substitution instance. Special case of riota2f 7368. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv2s ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐸,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 1150 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → (𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)))
2 simp1 1136 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐴𝑉)
3 riotasv2s.2 . . . . . 6 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
4 nfra1 3261 . . . . . . 7 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
5 nfcv 2891 . . . . . . 7 𝑦𝐴
64, 5nfriota 7356 . . . . . 6 𝑦(𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
73, 6nfcxfr 2889 . . . . 5 𝑦𝐷
87nfel1 2908 . . . 4 𝑦 𝐷𝐴
9 nfv 1914 . . . . 5 𝑦 𝐸𝐵
10 nfsbc1v 3773 . . . . 5 𝑦[𝐸 / 𝑦]𝜑
119, 10nfan 1899 . . . 4 𝑦(𝐸𝐵[𝐸 / 𝑦]𝜑)
128, 11nfan 1899 . . 3 𝑦(𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑))
13 nfcsb1v 3886 . . . 4 𝑦𝐸 / 𝑦𝐶
1413a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝑦𝐸 / 𝑦𝐶)
1510a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑)
163a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
17 sbceq1a 3764 . . . 4 (𝑦 = 𝐸 → (𝜑[𝐸 / 𝑦]𝜑))
1817adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑[𝐸 / 𝑦]𝜑))
19 csbeq1a 3876 . . . 4 (𝑦 = 𝐸𝐶 = 𝐸 / 𝑦𝐶)
2019adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = 𝐸 / 𝑦𝐶)
21 simpl 482 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷𝐴)
22 simprl 770 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐸𝐵)
23 simprr 772 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑)
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 38950 . 2 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝐴𝑉) → 𝐷 = 𝐸 / 𝑦𝐶)
251, 2, 24syl2anc 584 1 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  [wsbc 3753  csb 3862  crio 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-undef 8252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator