![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2s | Structured version Visualization version GIF version |
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5400) in the form of a substitution instance. Special case of riota2f 7385. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riotasv2s.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
Ref | Expression |
---|---|
riotasv2s | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1151 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → (𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑))) | |
2 | simp1 1137 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐴 ∈ 𝑉) | |
3 | riotasv2s.2 | . . . . . 6 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
4 | nfra1 3282 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
5 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
6 | 4, 5 | nfriota 7373 | . . . . . 6 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
7 | 3, 6 | nfcxfr 2902 | . . . . 5 ⊢ Ⅎ𝑦𝐷 |
8 | 7 | nfel1 2920 | . . . 4 ⊢ Ⅎ𝑦 𝐷 ∈ 𝐴 |
9 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑦 𝐸 ∈ 𝐵 | |
10 | nfsbc1v 3796 | . . . . 5 ⊢ Ⅎ𝑦[𝐸 / 𝑦]𝜑 | |
11 | 9, 10 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑦(𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑) |
12 | 8, 11 | nfan 1903 | . . 3 ⊢ Ⅎ𝑦(𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) |
13 | nfcsb1v 3917 | . . . 4 ⊢ Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶 | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶) |
15 | 10 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑) |
16 | 3 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
17 | sbceq1a 3787 | . . . 4 ⊢ (𝑦 = 𝐸 → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) | |
18 | 17 | adantl 483 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) |
19 | csbeq1a 3906 | . . . 4 ⊢ (𝑦 = 𝐸 → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) | |
20 | 19 | adantl 483 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) |
21 | simpl 484 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 ∈ 𝐴) | |
22 | simprl 770 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐸 ∈ 𝐵) | |
23 | simprr 772 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑) | |
24 | 12, 14, 15, 16, 18, 20, 21, 22, 23 | riotasv2d 37765 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝐴 ∈ 𝑉) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
25 | 1, 2, 24 | syl2anc 585 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ∀wral 3062 [wsbc 3776 ⦋csb 3892 ℩crio 7359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-riotaBAD 37761 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-riota 7360 df-undef 8253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |