| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2s | Structured version Visualization version GIF version | ||
| Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5378) in the form of a substitution instance. Special case of riota2f 7391. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasv2s.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| Ref | Expression |
|---|---|
| riotasv2s | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → (𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑))) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐴 ∈ 𝑉) | |
| 3 | riotasv2s.2 | . . . . . 6 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
| 4 | nfra1 3270 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
| 5 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
| 6 | 4, 5 | nfriota 7379 | . . . . . 6 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| 7 | 3, 6 | nfcxfr 2897 | . . . . 5 ⊢ Ⅎ𝑦𝐷 |
| 8 | 7 | nfel1 2916 | . . . 4 ⊢ Ⅎ𝑦 𝐷 ∈ 𝐴 |
| 9 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝐸 ∈ 𝐵 | |
| 10 | nfsbc1v 3790 | . . . . 5 ⊢ Ⅎ𝑦[𝐸 / 𝑦]𝜑 | |
| 11 | 9, 10 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑) |
| 12 | 8, 11 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) |
| 13 | nfcsb1v 3903 | . . . 4 ⊢ Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶 | |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶) |
| 15 | 10 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑) |
| 16 | 3 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| 17 | sbceq1a 3781 | . . . 4 ⊢ (𝑦 = 𝐸 → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) | |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) |
| 19 | csbeq1a 3893 | . . . 4 ⊢ (𝑦 = 𝐸 → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) | |
| 20 | 19 | adantl 481 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) |
| 21 | simpl 482 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 ∈ 𝐴) | |
| 22 | simprl 770 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐸 ∈ 𝐵) | |
| 23 | simprr 772 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑) | |
| 24 | 12, 14, 15, 16, 18, 20, 21, 22, 23 | riotasv2d 38980 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝐴 ∈ 𝑉) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
| 25 | 1, 2, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ∀wral 3052 [wsbc 3770 ⦋csb 3879 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-undef 8277 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |