Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Visualization version   GIF version

Theorem riotasv2s 37449
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5363) in the form of a substitution instance. Special case of riota2f 7343. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv2s ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐸,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 1151 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → (𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)))
2 simp1 1137 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐴𝑉)
3 riotasv2s.2 . . . . . 6 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
4 nfra1 3270 . . . . . . 7 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
5 nfcv 2908 . . . . . . 7 𝑦𝐴
64, 5nfriota 7331 . . . . . 6 𝑦(𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
73, 6nfcxfr 2906 . . . . 5 𝑦𝐷
87nfel1 2924 . . . 4 𝑦 𝐷𝐴
9 nfv 1918 . . . . 5 𝑦 𝐸𝐵
10 nfsbc1v 3764 . . . . 5 𝑦[𝐸 / 𝑦]𝜑
119, 10nfan 1903 . . . 4 𝑦(𝐸𝐵[𝐸 / 𝑦]𝜑)
128, 11nfan 1903 . . 3 𝑦(𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑))
13 nfcsb1v 3885 . . . 4 𝑦𝐸 / 𝑦𝐶
1413a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝑦𝐸 / 𝑦𝐶)
1510a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑)
163a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
17 sbceq1a 3755 . . . 4 (𝑦 = 𝐸 → (𝜑[𝐸 / 𝑦]𝜑))
1817adantl 483 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑[𝐸 / 𝑦]𝜑))
19 csbeq1a 3874 . . . 4 (𝑦 = 𝐸𝐶 = 𝐸 / 𝑦𝐶)
2019adantl 483 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = 𝐸 / 𝑦𝐶)
21 simpl 484 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷𝐴)
22 simprl 770 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐸𝐵)
23 simprr 772 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑)
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 37448 . 2 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝐴𝑉) → 𝐷 = 𝐸 / 𝑦𝐶)
251, 2, 24syl2anc 585 1 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wnfc 2888  wral 3065  [wsbc 3744  csb 3860  crio 7317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-riotaBAD 37444
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-riota 7318  df-undef 8209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator