Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Visualization version   GIF version

Theorem riotasv2s 38940
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5409) in the form of a substitution instance. Special case of riota2f 7412. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv2s ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐸,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 1149 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → (𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)))
2 simp1 1135 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐴𝑉)
3 riotasv2s.2 . . . . . 6 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
4 nfra1 3282 . . . . . . 7 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
5 nfcv 2903 . . . . . . 7 𝑦𝐴
64, 5nfriota 7400 . . . . . 6 𝑦(𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
73, 6nfcxfr 2901 . . . . 5 𝑦𝐷
87nfel1 2920 . . . 4 𝑦 𝐷𝐴
9 nfv 1912 . . . . 5 𝑦 𝐸𝐵
10 nfsbc1v 3811 . . . . 5 𝑦[𝐸 / 𝑦]𝜑
119, 10nfan 1897 . . . 4 𝑦(𝐸𝐵[𝐸 / 𝑦]𝜑)
128, 11nfan 1897 . . 3 𝑦(𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑))
13 nfcsb1v 3933 . . . 4 𝑦𝐸 / 𝑦𝐶
1413a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝑦𝐸 / 𝑦𝐶)
1510a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑)
163a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
17 sbceq1a 3802 . . . 4 (𝑦 = 𝐸 → (𝜑[𝐸 / 𝑦]𝜑))
1817adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑[𝐸 / 𝑦]𝜑))
19 csbeq1a 3922 . . . 4 (𝑦 = 𝐸𝐶 = 𝐸 / 𝑦𝐶)
2019adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = 𝐸 / 𝑦𝐶)
21 simpl 482 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷𝐴)
22 simprl 771 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐸𝐵)
23 simprr 773 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑)
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 38939 . 2 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝐴𝑉) → 𝐷 = 𝐸 / 𝑦𝐶)
251, 2, 24syl2anc 584 1 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wral 3059  [wsbc 3791  csb 3908  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-undef 8297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator