![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2s | Structured version Visualization version GIF version |
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5394) in the form of a substitution instance. Special case of riota2f 7386. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riotasv2s.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
Ref | Expression |
---|---|
riotasv2s | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1147 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → (𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑))) | |
2 | simp1 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐴 ∈ 𝑉) | |
3 | riotasv2s.2 | . . . . . 6 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
4 | nfra1 3275 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
5 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
6 | 4, 5 | nfriota 7374 | . . . . . 6 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
7 | 3, 6 | nfcxfr 2895 | . . . . 5 ⊢ Ⅎ𝑦𝐷 |
8 | 7 | nfel1 2913 | . . . 4 ⊢ Ⅎ𝑦 𝐷 ∈ 𝐴 |
9 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑦 𝐸 ∈ 𝐵 | |
10 | nfsbc1v 3792 | . . . . 5 ⊢ Ⅎ𝑦[𝐸 / 𝑦]𝜑 | |
11 | 9, 10 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑦(𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑) |
12 | 8, 11 | nfan 1894 | . . 3 ⊢ Ⅎ𝑦(𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) |
13 | nfcsb1v 3913 | . . . 4 ⊢ Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶 | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦⦋𝐸 / 𝑦⦌𝐶) |
15 | 10 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑) |
16 | 3 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
17 | sbceq1a 3783 | . . . 4 ⊢ (𝑦 = 𝐸 → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) | |
18 | 17 | adantl 481 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑 ↔ [𝐸 / 𝑦]𝜑)) |
19 | csbeq1a 3902 | . . . 4 ⊢ (𝑦 = 𝐸 → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) | |
20 | 19 | adantl 481 | . . 3 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = ⦋𝐸 / 𝑦⦌𝐶) |
21 | simpl 482 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 ∈ 𝐴) | |
22 | simprl 768 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐸 ∈ 𝐵) | |
23 | simprr 770 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑) | |
24 | 12, 14, 15, 16, 18, 20, 21, 22, 23 | riotasv2d 38340 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) ∧ 𝐴 ∈ 𝑉) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
25 | 1, 2, 24 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2877 ∀wral 3055 [wsbc 3772 ⦋csb 3888 ℩crio 7360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-riotaBAD 38336 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-riota 7361 df-undef 8259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |