Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Visualization version   GIF version

Theorem riotasv2s 38981
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5378) in the form of a substitution instance. Special case of riota2f 7391. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv2s ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐸,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 1150 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → (𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)))
2 simp1 1136 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐴𝑉)
3 riotasv2s.2 . . . . . 6 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
4 nfra1 3270 . . . . . . 7 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
5 nfcv 2899 . . . . . . 7 𝑦𝐴
64, 5nfriota 7379 . . . . . 6 𝑦(𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
73, 6nfcxfr 2897 . . . . 5 𝑦𝐷
87nfel1 2916 . . . 4 𝑦 𝐷𝐴
9 nfv 1914 . . . . 5 𝑦 𝐸𝐵
10 nfsbc1v 3790 . . . . 5 𝑦[𝐸 / 𝑦]𝜑
119, 10nfan 1899 . . . 4 𝑦(𝐸𝐵[𝐸 / 𝑦]𝜑)
128, 11nfan 1899 . . 3 𝑦(𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑))
13 nfcsb1v 3903 . . . 4 𝑦𝐸 / 𝑦𝐶
1413a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝑦𝐸 / 𝑦𝐶)
1510a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑)
163a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
17 sbceq1a 3781 . . . 4 (𝑦 = 𝐸 → (𝜑[𝐸 / 𝑦]𝜑))
1817adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑[𝐸 / 𝑦]𝜑))
19 csbeq1a 3893 . . . 4 (𝑦 = 𝐸𝐶 = 𝐸 / 𝑦𝐶)
2019adantl 481 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = 𝐸 / 𝑦𝐶)
21 simpl 482 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷𝐴)
22 simprl 770 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐸𝐵)
23 simprr 772 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑)
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 38980 . 2 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝐴𝑉) → 𝐷 = 𝐸 / 𝑦𝐶)
251, 2, 24syl2anc 584 1 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  wral 3052  [wsbc 3770  csb 3879  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-riota 7367  df-undef 8277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator