Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19x Structured version   Visualization version   GIF version

Theorem cdlemk19x 40327
Description: cdlemk19 40253 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk5.y π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdlemk5.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk19x ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ))
Distinct variable groups:   ∧ ,𝑔   ∨ ,𝑔   𝐡,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝑧, ∧   ≀ ,𝑏   𝑧,𝑔, ≀   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   π‘Œ(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk19x
StepHypRef Expression
1 simp1l 1194 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 cdlemk5.b . . . 4 𝐡 = (Baseβ€˜πΎ)
3 cdlemk5.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 cdlemk5.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 cdlemk5.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5cdlemftr1 39951 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))
71, 6syl 17 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))
8 nfv 1909 . . 3 Ⅎ𝑏(((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
9 nfcv 2897 . . . . . 6 Ⅎ𝑏𝐹
10 cdlemk5.x . . . . . . 7 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
11 nfra1 3275 . . . . . . . 8 β„²π‘βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ)
12 nfcv 2897 . . . . . . . 8 Ⅎ𝑏𝑇
1311, 12nfriota 7374 . . . . . . 7 Ⅎ𝑏(℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
1410, 13nfcxfr 2895 . . . . . 6 Ⅎ𝑏𝑋
159, 14nfcsbw 3915 . . . . 5 Ⅎ𝑏⦋𝐹 / π‘”β¦Œπ‘‹
16 nfcv 2897 . . . . 5 Ⅎ𝑏𝑃
1715, 16nffv 6895 . . . 4 Ⅎ𝑏(⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ)
1817nfeq1 2912 . . 3 Ⅎ𝑏(⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ)
19 simpl1 1188 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
20 simpl2 1189 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇))
21 simpl3 1190 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
22 simpr 484 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ))))
23 cdlemk5.l . . . . . 6 ≀ = (leβ€˜πΎ)
24 cdlemk5.j . . . . . 6 ∨ = (joinβ€˜πΎ)
25 cdlemk5.m . . . . . 6 ∧ = (meetβ€˜πΎ)
26 cdlemk5.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
27 cdlemk5.z . . . . . 6 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
28 cdlemk5.y . . . . . 6 π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
292, 23, 24, 25, 26, 3, 4, 5, 27, 28, 10cdlemk19xlem 40326 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ))
3019, 20, 21, 22, 29syl121anc 1372 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)))) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ))
3130exp32 420 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑏 ∈ 𝑇 β†’ ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ))))
328, 18, 31rexlimd 3257 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ)) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ)))
337, 32mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (⦋𝐹 / π‘”β¦Œπ‘‹β€˜π‘ƒ) = (π‘β€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  β¦‹csb 3888   class class class wbr 5141   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-undef 8259  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  cdlemk19u1  40353
  Copyright terms: Public domain W3C validator