Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19x Structured version   Visualization version   GIF version

Theorem cdlemk19x 36920
Description: cdlemk19 36846 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk19x ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝑧,   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk19x
StepHypRef Expression
1 simp1l 1254 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
3 cdlemk5.h . . . 4 𝐻 = (LHyp‘𝐾)
4 cdlemk5.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5cdlemftr1 36544 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
71, 6syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
8 nfv 2009 . . 3 𝑏(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 nfcv 2907 . . . . . 6 𝑏𝐹
10 cdlemk5.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
11 nfra1 3088 . . . . . . . 8 𝑏𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)
12 nfcv 2907 . . . . . . . 8 𝑏𝑇
1311, 12nfriota 6816 . . . . . . 7 𝑏(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
1410, 13nfcxfr 2905 . . . . . 6 𝑏𝑋
159, 14nfcsb 3711 . . . . 5 𝑏𝐹 / 𝑔𝑋
16 nfcv 2907 . . . . 5 𝑏𝑃
1715, 16nffv 6389 . . . 4 𝑏(𝐹 / 𝑔𝑋𝑃)
1817nfeq1 2921 . . 3 𝑏(𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃)
19 simpl1 1242 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
20 simpl2 1244 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇))
21 simpl3 1246 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹))))
23 cdlemk5.l . . . . . 6 = (le‘𝐾)
24 cdlemk5.j . . . . . 6 = (join‘𝐾)
25 cdlemk5.m . . . . . 6 = (meet‘𝐾)
26 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
27 cdlemk5.z . . . . . 6 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
28 cdlemk5.y . . . . . 6 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
292, 23, 24, 25, 26, 3, 4, 5, 27, 28, 10cdlemk19xlem 36919 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
3019, 20, 21, 22, 29syl121anc 1494 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
3130exp32 411 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))))
328, 18, 31rexlimd 3173 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃)))
337, 32mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  csb 3693   class class class wbr 4811   I cid 5186  ccnv 5278  cres 5281  ccom 5283  cfv 6070  crio 6806  (class class class)co 6846  Basecbs 16144  lecple 16235  joincjn 17224  meetcmee 17225  Atomscatm 35240  HLchlt 35327  LHypclh 35961  LTrncltrn 36078  trLctrl 36135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-riotaBAD 34930
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-undef 7606  df-map 8066  df-proset 17208  df-poset 17226  df-plt 17238  df-lub 17254  df-glb 17255  df-join 17256  df-meet 17257  df-p0 17319  df-p1 17320  df-lat 17326  df-clat 17388  df-oposet 35153  df-ol 35155  df-oml 35156  df-covers 35243  df-ats 35244  df-atl 35275  df-cvlat 35299  df-hlat 35328  df-llines 35475  df-lplanes 35476  df-lvols 35477  df-lines 35478  df-psubsp 35480  df-pmap 35481  df-padd 35773  df-lhyp 35965  df-laut 35966  df-ldil 36081  df-ltrn 36082  df-trl 36136
This theorem is referenced by:  cdlemk19u1  36946
  Copyright terms: Public domain W3C validator