Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32d Structured version   Visualization version   GIF version

Theorem cdleme32d 36421
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑋,𝑠,𝑡,𝑥,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,𝑌   𝑧,𝐻   𝑧,𝐾   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32d
StepHypRef Expression
1 simp11 1260 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1263 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → 𝑋𝐵)
3 simp23r 1394 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → ¬ 𝑋 𝑊)
4 cdleme32.b . . . 4 𝐵 = (Base‘𝐾)
5 cdleme32.l . . . 4 = (le‘𝐾)
6 cdleme32.j . . . 4 = (join‘𝐾)
7 cdleme32.m . . . 4 = (meet‘𝐾)
8 cdleme32.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme32.h . . . 4 𝐻 = (LHyp‘𝐾)
104, 5, 6, 7, 8, 9lhpmcvr2 36001 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
111, 2, 3, 10syl12anc 865 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
12 nfv 2009 . . 3 𝑠(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌)
13 cdleme32.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
14 nfcv 2907 . . . . . . 7 𝑠𝐵
15 nfv 2009 . . . . . . . 8 𝑠(𝑃𝑄 ∧ ¬ 𝑥 𝑊)
16 cdleme32.o . . . . . . . . 9 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
17 nfra1 3088 . . . . . . . . . 10 𝑠𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊)))
1817, 14nfriota 6816 . . . . . . . . 9 𝑠(𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
1916, 18nfcxfr 2905 . . . . . . . 8 𝑠𝑂
20 nfcv 2907 . . . . . . . 8 𝑠𝑥
2115, 19, 20nfif 4274 . . . . . . 7 𝑠if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥)
2214, 21nfmpt 4907 . . . . . 6 𝑠(𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2313, 22nfcxfr 2905 . . . . 5 𝑠𝐹
24 nfcv 2907 . . . . 5 𝑠𝑋
2523, 24nffv 6389 . . . 4 𝑠(𝐹𝑋)
26 nfcv 2907 . . . 4 𝑠
27 nfcv 2907 . . . . 5 𝑠𝑌
2823, 27nffv 6389 . . . 4 𝑠(𝐹𝑌)
2925, 26, 28nfbr 4858 . . 3 𝑠(𝐹𝑋) (𝐹𝑌)
30 simpl1 1242 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
31 simpl2 1244 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
32 simprl 787 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → 𝑠𝐴)
33 simprrl 799 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑠 𝑊)
3432, 33jca 507 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
35 simprrr 800 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → (𝑠 (𝑋 𝑊)) = 𝑋)
36 simpl3 1246 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → 𝑋 𝑌)
37 cdleme32.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
38 cdleme32.c . . . . . 6 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
39 cdleme32.d . . . . . 6 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
40 cdleme32.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
41 cdleme32.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
42 cdleme32.n . . . . . 6 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
434, 5, 6, 7, 8, 9, 37, 38, 39, 40, 41, 42, 16, 13cdleme32c 36420 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐹𝑋) (𝐹𝑌))
4430, 31, 34, 35, 36, 43syl113anc 1501 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))) → (𝐹𝑋) (𝐹𝑌))
4544exp32 411 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝑠𝐴 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → (𝐹𝑋) (𝐹𝑌))))
4612, 29, 45rexlimd 3173 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → (𝐹𝑋) (𝐹𝑌)))
4711, 46mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  ifcif 4245   class class class wbr 4811  cmpt 4890  cfv 6070  crio 6806  (class class class)co 6846  Basecbs 16144  lecple 16235  joincjn 17224  meetcmee 17225  Atomscatm 35240  HLchlt 35327  LHypclh 35961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-riotaBAD 34930
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-undef 7606  df-proset 17208  df-poset 17226  df-plt 17238  df-lub 17254  df-glb 17255  df-join 17256  df-meet 17257  df-p0 17319  df-p1 17320  df-lat 17326  df-clat 17388  df-oposet 35153  df-ol 35155  df-oml 35156  df-covers 35243  df-ats 35244  df-atl 35275  df-cvlat 35299  df-hlat 35328  df-llines 35475  df-lplanes 35476  df-lvols 35477  df-lines 35478  df-psubsp 35480  df-pmap 35481  df-padd 35773  df-lhyp 35965
This theorem is referenced by:  cdleme32le  36424
  Copyright terms: Public domain W3C validator