MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Structured version   Visualization version   GIF version

Theorem nominpos 11515
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 11504 . . . 4 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ)
2 2re 11346 . . . . . . 7 2 ∈ ℝ
3 2pos 11382 . . . . . . 7 0 < 2
4 divgt0 11145 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2))
52, 3, 4mpanr12 696 . . . . . 6 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2))
65ex 401 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2)))
7 halfpos 11508 . . . . . 6 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
87biimpd 220 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥))
96, 8jcad 508 . . . 4 (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
10 breq2 4813 . . . . . 6 (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2)))
11 breq1 4812 . . . . . 6 (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
1210, 11anbi12d 624 . . . . 5 (𝑦 = (𝑥 / 2) → ((0 < 𝑦𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
1312rspcev 3461 . . . 4 (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
141, 9, 13syl6an 674 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
15 iman 390 . . 3 ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1614, 15sylib 209 . 2 (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1716nrex 3146 1 ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wrex 3056   class class class wbr 4809  (class class class)co 6842  cr 10188  0cc0 10189   < clt 10328   / cdiv 10938  2c2 11327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-2 11335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator