| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nominpos | Structured version Visualization version GIF version | ||
| Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.) |
| Ref | Expression |
|---|---|
| nominpos | ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcl 12492 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ) | |
| 2 | 2re 12340 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 3 | 2pos 12369 | . . . . . . 7 ⊢ 0 < 2 | |
| 4 | divgt0 12136 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2)) | |
| 5 | 2, 3, 4 | mpanr12 705 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2)) |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2))) |
| 7 | halfpos 12496 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
| 8 | 7 | biimpd 229 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥)) |
| 9 | 6, 8 | jcad 512 | . . . 4 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
| 10 | breq2 5147 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2))) | |
| 11 | breq1 5146 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
| 12 | 10, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = (𝑥 / 2) → ((0 < 𝑦 ∧ 𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
| 13 | 12 | rspcev 3622 | . . . 4 ⊢ (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
| 14 | 1, 9, 13 | syl6an 684 | . . 3 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
| 15 | iman 401 | . . 3 ⊢ ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) | |
| 16 | 14, 15 | sylib 218 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
| 17 | 16 | nrex 3074 | 1 ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 0cc0 11155 < clt 11295 / cdiv 11920 2c2 12321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |