![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nominpos | Structured version Visualization version GIF version |
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.) |
Ref | Expression |
---|---|
nominpos | ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rehalfcl 12380 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ) | |
2 | 2re 12228 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
3 | 2pos 12257 | . . . . . . 7 ⊢ 0 < 2 | |
4 | divgt0 12024 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2)) | |
5 | 2, 3, 4 | mpanr12 704 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2)) |
6 | 5 | ex 414 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2))) |
7 | halfpos 12384 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
8 | 7 | biimpd 228 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥)) |
9 | 6, 8 | jcad 514 | . . . 4 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
10 | breq2 5110 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2))) | |
11 | breq1 5109 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
12 | 10, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = (𝑥 / 2) → ((0 < 𝑦 ∧ 𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
13 | 12 | rspcev 3582 | . . . 4 ⊢ (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
14 | 1, 9, 13 | syl6an 683 | . . 3 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
15 | iman 403 | . . 3 ⊢ ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) | |
16 | 14, 15 | sylib 217 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
17 | 16 | nrex 3078 | 1 ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 class class class wbr 5106 (class class class)co 7358 ℝcr 11051 0cc0 11052 < clt 11190 / cdiv 11813 2c2 12209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-2 12217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |