MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Structured version   Visualization version   GIF version

Theorem nominpos 12501
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 12490 . . . 4 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ)
2 2re 12338 . . . . . . 7 2 ∈ ℝ
3 2pos 12367 . . . . . . 7 0 < 2
4 divgt0 12134 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2))
52, 3, 4mpanr12 705 . . . . . 6 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2))
65ex 412 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2)))
7 halfpos 12494 . . . . . 6 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
87biimpd 229 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥))
96, 8jcad 512 . . . 4 (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
10 breq2 5152 . . . . . 6 (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2)))
11 breq1 5151 . . . . . 6 (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
1210, 11anbi12d 632 . . . . 5 (𝑦 = (𝑥 / 2) → ((0 < 𝑦𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
1312rspcev 3622 . . . 4 (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
141, 9, 13syl6an 684 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
15 iman 401 . . 3 ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1614, 15sylib 218 . 2 (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1716nrex 3072 1 ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   < clt 11293   / cdiv 11918  2c2 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator