MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Structured version   Visualization version   GIF version

Theorem nominpos 12210
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 12199 . . . 4 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ)
2 2re 12047 . . . . . . 7 2 ∈ ℝ
3 2pos 12076 . . . . . . 7 0 < 2
4 divgt0 11843 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2))
52, 3, 4mpanr12 702 . . . . . 6 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2))
65ex 413 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2)))
7 halfpos 12203 . . . . . 6 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
87biimpd 228 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥))
96, 8jcad 513 . . . 4 (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
10 breq2 5078 . . . . . 6 (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2)))
11 breq1 5077 . . . . . 6 (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
1210, 11anbi12d 631 . . . . 5 (𝑦 = (𝑥 / 2) → ((0 < 𝑦𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
1312rspcev 3561 . . . 4 (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
141, 9, 13syl6an 681 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
15 iman 402 . . 3 ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1614, 15sylib 217 . 2 (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1716nrex 3197 1 ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   < clt 11009   / cdiv 11632  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator