| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlan0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| fmlan0 | ⊢ ∅ ∉ (Fmla‘ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlaomn0 35455 | . . . 4 ⊢ (𝑥 ∈ ω → ∅ ∉ (Fmla‘𝑥)) | |
| 2 | df-nel 3034 | . . . 4 ⊢ (∅ ∉ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑥)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑥)) |
| 4 | 3 | nrex 3061 | . 2 ⊢ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥) |
| 5 | df-nel 3034 | . . 3 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∅ ∈ (Fmla‘ω)) | |
| 6 | fmla 35446 | . . . . 5 ⊢ (Fmla‘ω) = ∪ 𝑥 ∈ ω (Fmla‘𝑥) | |
| 7 | 6 | eleq2i 2825 | . . . 4 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥)) |
| 8 | eliun 4945 | . . . 4 ⊢ (∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
| 10 | 5, 9 | xchbinx 334 | . 2 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
| 11 | 4, 10 | mpbir 231 | 1 ⊢ ∅ ∉ (Fmla‘ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 ∉ wnel 3033 ∃wrex 3057 ∅c0 4282 ∪ ciun 4941 ‘cfv 6486 ωcom 7802 Fmlacfmla 35402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-map 8758 df-goel 35405 df-gona 35406 df-goal 35407 df-sat 35408 df-fmla 35410 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |