Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlan0 | Structured version Visualization version GIF version |
Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
fmlan0 | ⊢ ∅ ∉ (Fmla‘ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmlaomn0 33252 | . . . 4 ⊢ (𝑥 ∈ ω → ∅ ∉ (Fmla‘𝑥)) | |
2 | df-nel 3049 | . . . 4 ⊢ (∅ ∉ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑥)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝑥 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑥)) |
4 | 3 | nrex 3196 | . 2 ⊢ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥) |
5 | df-nel 3049 | . . 3 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∅ ∈ (Fmla‘ω)) | |
6 | fmla 33243 | . . . . 5 ⊢ (Fmla‘ω) = ∪ 𝑥 ∈ ω (Fmla‘𝑥) | |
7 | 6 | eleq2i 2830 | . . . 4 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥)) |
8 | eliun 4925 | . . . 4 ⊢ (∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) | |
9 | 7, 8 | bitri 274 | . . 3 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
10 | 5, 9 | xchbinx 333 | . 2 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
11 | 4, 10 | mpbir 230 | 1 ⊢ ∅ ∉ (Fmla‘ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3048 ∃wrex 3064 ∅c0 4253 ∪ ciun 4921 ‘cfv 6418 ωcom 7687 Fmlacfmla 33199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-map 8575 df-goel 33202 df-gona 33203 df-goal 33204 df-sat 33205 df-fmla 33207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |