Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlan0 Structured version   Visualization version   GIF version

Theorem fmlan0 35423
Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
fmlan0 ∅ ∉ (Fmla‘ω)

Proof of Theorem fmlan0
StepHypRef Expression
1 fmlaomn0 35422 . . . 4 (𝑥 ∈ ω → ∅ ∉ (Fmla‘𝑥))
2 df-nel 3033 . . . 4 (∅ ∉ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑥))
31, 2sylib 218 . . 3 (𝑥 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑥))
43nrex 3060 . 2 ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)
5 df-nel 3033 . . 3 (∅ ∉ (Fmla‘ω) ↔ ¬ ∅ ∈ (Fmla‘ω))
6 fmla 35413 . . . . 5 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
76eleq2i 2823 . . . 4 (∅ ∈ (Fmla‘ω) ↔ ∅ ∈ 𝑥 ∈ ω (Fmla‘𝑥))
8 eliun 4945 . . . 4 (∅ ∈ 𝑥 ∈ ω (Fmla‘𝑥) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
97, 8bitri 275 . . 3 (∅ ∈ (Fmla‘ω) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
105, 9xchbinx 334 . 2 (∅ ∉ (Fmla‘ω) ↔ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
114, 10mpbir 231 1 ∅ ∉ (Fmla‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111  wnel 3032  wrex 3056  c0 4283   ciun 4941  cfv 6481  ωcom 7796  Fmlacfmla 35369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-map 8752  df-goel 35372  df-gona 35373  df-goal 35374  df-sat 35375  df-fmla 35377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator