| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlan0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| fmlan0 | ⊢ ∅ ∉ (Fmla‘ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlaomn0 35362 | . . . 4 ⊢ (𝑥 ∈ ω → ∅ ∉ (Fmla‘𝑥)) | |
| 2 | df-nel 3030 | . . . 4 ⊢ (∅ ∉ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑥)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑥)) |
| 4 | 3 | nrex 3057 | . 2 ⊢ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥) |
| 5 | df-nel 3030 | . . 3 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∅ ∈ (Fmla‘ω)) | |
| 6 | fmla 35353 | . . . . 5 ⊢ (Fmla‘ω) = ∪ 𝑥 ∈ ω (Fmla‘𝑥) | |
| 7 | 6 | eleq2i 2820 | . . . 4 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥)) |
| 8 | eliun 4948 | . . . 4 ⊢ (∅ ∈ ∪ 𝑥 ∈ ω (Fmla‘𝑥) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∅ ∈ (Fmla‘ω) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
| 10 | 5, 9 | xchbinx 334 | . 2 ⊢ (∅ ∉ (Fmla‘ω) ↔ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)) |
| 11 | 4, 10 | mpbir 231 | 1 ⊢ ∅ ∉ (Fmla‘ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 ∃wrex 3053 ∅c0 4286 ∪ ciun 4944 ‘cfv 6486 ωcom 7806 Fmlacfmla 35309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-map 8762 df-goel 35312 df-gona 35313 df-goal 35314 df-sat 35315 df-fmla 35317 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |