Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlan0 Structured version   Visualization version   GIF version

Theorem fmlan0 35396
Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
fmlan0 ∅ ∉ (Fmla‘ω)

Proof of Theorem fmlan0
StepHypRef Expression
1 fmlaomn0 35395 . . . 4 (𝑥 ∈ ω → ∅ ∉ (Fmla‘𝑥))
2 df-nel 3047 . . . 4 (∅ ∉ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑥))
31, 2sylib 218 . . 3 (𝑥 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑥))
43nrex 3074 . 2 ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥)
5 df-nel 3047 . . 3 (∅ ∉ (Fmla‘ω) ↔ ¬ ∅ ∈ (Fmla‘ω))
6 fmla 35386 . . . . 5 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
76eleq2i 2833 . . . 4 (∅ ∈ (Fmla‘ω) ↔ ∅ ∈ 𝑥 ∈ ω (Fmla‘𝑥))
8 eliun 4995 . . . 4 (∅ ∈ 𝑥 ∈ ω (Fmla‘𝑥) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
97, 8bitri 275 . . 3 (∅ ∈ (Fmla‘ω) ↔ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
105, 9xchbinx 334 . 2 (∅ ∉ (Fmla‘ω) ↔ ¬ ∃𝑥 ∈ ω ∅ ∈ (Fmla‘𝑥))
114, 10mpbir 231 1 ∅ ∉ (Fmla‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  wnel 3046  wrex 3070  c0 4333   ciun 4991  cfv 6561  ωcom 7887  Fmlacfmla 35342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-map 8868  df-goel 35345  df-gona 35346  df-goal 35347  df-sat 35348  df-fmla 35350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator