Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Structured version   Visualization version   GIF version

Theorem rdgprc0 33488
Description: The value of the recursive definition generator at when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)

Proof of Theorem rdgprc0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0elon 6266 . . . 4 ∅ ∈ On
2 rdgval 8156 . . . 4 (∅ ∈ On → (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)))
31, 2ax-mp 5 . . 3 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅))
4 res0 5855 . . . 4 (rec(𝐹, 𝐼) ↾ ∅) = ∅
54fveq2i 6720 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
63, 5eqtri 2765 . 2 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
7 eqeq1 2741 . . . . . . 7 (𝑔 = ∅ → (𝑔 = ∅ ↔ ∅ = ∅))
8 dmeq 5772 . . . . . . . . 9 (𝑔 = ∅ → dom 𝑔 = dom ∅)
9 limeq 6225 . . . . . . . . 9 (dom 𝑔 = dom ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
108, 9syl 17 . . . . . . . 8 (𝑔 = ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
11 rneq 5805 . . . . . . . . 9 (𝑔 = ∅ → ran 𝑔 = ran ∅)
1211unieqd 4833 . . . . . . . 8 (𝑔 = ∅ → ran 𝑔 = ran ∅)
13 id 22 . . . . . . . . . 10 (𝑔 = ∅ → 𝑔 = ∅)
148unieqd 4833 . . . . . . . . . 10 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1513, 14fveq12d 6724 . . . . . . . . 9 (𝑔 = ∅ → (𝑔 dom 𝑔) = (∅‘ dom ∅))
1615fveq2d 6721 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘(∅‘ dom ∅)))
1710, 12, 16ifbieq12d 4467 . . . . . . 7 (𝑔 = ∅ → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅))))
187, 17ifbieq2d 4465 . . . . . 6 (𝑔 = ∅ → if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))))
1918eleq1d 2822 . . . . 5 (𝑔 = ∅ → (if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V ↔ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
20 eqid 2737 . . . . . 6 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
2120dmmpt 6103 . . . . 5 dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = {𝑔 ∈ V ∣ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V}
2219, 21elrab2 3605 . . . 4 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) ↔ (∅ ∈ V ∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
23 eqid 2737 . . . . . . 7 ∅ = ∅
2423iftruei 4446 . . . . . 6 if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) = 𝐼
2524eleq1i 2828 . . . . 5 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V ↔ 𝐼 ∈ V)
2625biimpi 219 . . . 4 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V → 𝐼 ∈ V)
2722, 26simplbiim 508 . . 3 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → 𝐼 ∈ V)
28 ndmfv 6747 . . 3 (¬ ∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
2927, 28nsyl5 162 . 2 𝐼 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
306, 29syl5eq 2790 1 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  ifcif 4439   cuni 4819  cmpt 5135  dom cdm 5551  ran crn 5552  cres 5553  Oncon0 6213  Lim wlim 6214  cfv 6380  reccrdg 8145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-wrecs 8047  df-recs 8108  df-rdg 8146
This theorem is referenced by:  rdgprc  33489
  Copyright terms: Public domain W3C validator