Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Structured version   Visualization version   GIF version

Theorem rdgprc0 35617
Description: The value of the recursive definition generator at when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)

Proof of Theorem rdgprc0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0elon 6430 . . . 4 ∅ ∈ On
2 rdgval 8450 . . . 4 (∅ ∈ On → (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)))
31, 2ax-mp 5 . . 3 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅))
4 res0 5993 . . . 4 (rec(𝐹, 𝐼) ↾ ∅) = ∅
54fveq2i 6904 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
63, 5eqtri 2754 . 2 (rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
7 eqeq1 2730 . . . . . . 7 (𝑔 = ∅ → (𝑔 = ∅ ↔ ∅ = ∅))
8 dmeq 5910 . . . . . . . . 9 (𝑔 = ∅ → dom 𝑔 = dom ∅)
9 limeq 6388 . . . . . . . . 9 (dom 𝑔 = dom ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
108, 9syl 17 . . . . . . . 8 (𝑔 = ∅ → (Lim dom 𝑔 ↔ Lim dom ∅))
11 rneq 5942 . . . . . . . . 9 (𝑔 = ∅ → ran 𝑔 = ran ∅)
1211unieqd 4926 . . . . . . . 8 (𝑔 = ∅ → ran 𝑔 = ran ∅)
13 id 22 . . . . . . . . . 10 (𝑔 = ∅ → 𝑔 = ∅)
148unieqd 4926 . . . . . . . . . 10 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1513, 14fveq12d 6908 . . . . . . . . 9 (𝑔 = ∅ → (𝑔 dom 𝑔) = (∅‘ dom ∅))
1615fveq2d 6905 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘(∅‘ dom ∅)))
1710, 12, 16ifbieq12d 4561 . . . . . . 7 (𝑔 = ∅ → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅))))
187, 17ifbieq2d 4559 . . . . . 6 (𝑔 = ∅ → if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))))
1918eleq1d 2811 . . . . 5 (𝑔 = ∅ → (if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V ↔ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
20 eqid 2726 . . . . . 6 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
2120dmmpt 6251 . . . . 5 dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = {𝑔 ∈ V ∣ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) ∈ V}
2219, 21elrab2 3684 . . . 4 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) ↔ (∅ ∈ V ∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V))
23 eqid 2726 . . . . . . 7 ∅ = ∅
2423iftruei 4540 . . . . . 6 if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) = 𝐼
2524eleq1i 2817 . . . . 5 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V ↔ 𝐼 ∈ V)
2625biimpi 215 . . . 4 (if(∅ = ∅, 𝐼, if(Lim dom ∅, ran ∅, (𝐹‘(∅‘ dom ∅)))) ∈ V → 𝐼 ∈ V)
2722, 26simplbiim 503 . . 3 (∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → 𝐼 ∈ V)
28 ndmfv 6936 . . 3 (¬ ∅ ∈ dom (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
2927, 28nsyl5 159 . 2 𝐼 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
306, 29eqtrid 2778 1 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1534  wcel 2099  Vcvv 3462  c0 4325  ifcif 4533   cuni 4913  cmpt 5236  dom cdm 5682  ran crn 5683  cres 5684  Oncon0 6376  Lim wlim 6377  cfv 6554  reccrdg 8439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440
This theorem is referenced by:  rdgprc  35618
  Copyright terms: Public domain W3C validator