MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resstopn Structured version   Visualization version   GIF version

Theorem resstopn 23194
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
resstopn.1 𝐻 = (𝐾s 𝐴)
resstopn.2 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
resstopn (𝐽t 𝐴) = (TopOpen‘𝐻)

Proof of Theorem resstopn
StepHypRef Expression
1 fvex 6919 . . . . 5 (TopSet‘𝐾) ∈ V
2 fvex 6919 . . . . 5 (Base‘𝐾) ∈ V
3 restco 23172 . . . . 5 (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)))
41, 2, 3mp3an12 1453 . . . 4 (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)))
5 resstopn.1 . . . . . 6 𝐻 = (𝐾s 𝐴)
6 eqid 2737 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
75, 6resstset 17409 . . . . 5 (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻))
8 incom 4209 . . . . . 6 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
9 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
105, 9ressbas 17280 . . . . . 6 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻))
118, 10eqtrid 2789 . . . . 5 (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻))
127, 11oveq12d 7449 . . . 4 (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻)))
134, 12eqtrd 2777 . . 3 (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻)))
149, 6topnval 17479 . . . . 5 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
15 resstopn.2 . . . . 5 𝐽 = (TopOpen‘𝐾)
1614, 15eqtr4i 2768 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽
1716oveq1i 7441 . . 3 (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽t 𝐴)
18 eqid 2737 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2737 . . . 4 (TopSet‘𝐻) = (TopSet‘𝐻)
2018, 19topnval 17479 . . 3 ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻)
2113, 17, 203eqtr3g 2800 . 2 (𝐴 ∈ V → (𝐽t 𝐴) = (TopOpen‘𝐻))
22 simpr 484 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
23 restfn 17469 . . . . . 6 t Fn (V × V)
2423fndmi 6672 . . . . 5 dom ↾t = (V × V)
2524ndmov 7617 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
2622, 25nsyl5 159 . . 3 𝐴 ∈ V → (𝐽t 𝐴) = ∅)
27 reldmress 17276 . . . . . . . . 9 Rel dom ↾s
2827ovprc2 7471 . . . . . . . 8 𝐴 ∈ V → (𝐾s 𝐴) = ∅)
295, 28eqtrid 2789 . . . . . . 7 𝐴 ∈ V → 𝐻 = ∅)
3029fveq2d 6910 . . . . . 6 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅))
31 tsetid 17397 . . . . . . 7 TopSet = Slot (TopSet‘ndx)
3231str0 17226 . . . . . 6 ∅ = (TopSet‘∅)
3330, 32eqtr4di 2795 . . . . 5 𝐴 ∈ V → (TopSet‘𝐻) = ∅)
3433oveq1d 7446 . . . 4 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻)))
35 0rest 17474 . . . 4 (∅ ↾t (Base‘𝐻)) = ∅
3634, 20, 353eqtr3g 2800 . . 3 𝐴 ∈ V → (TopOpen‘𝐻) = ∅)
3726, 36eqtr4d 2780 . 2 𝐴 ∈ V → (𝐽t 𝐴) = (TopOpen‘𝐻))
3821, 37pm2.61i 182 1 (𝐽t 𝐴) = (TopOpen‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  c0 4333   × cxp 5683  cfv 6561  (class class class)co 7431  ndxcnx 17230  Basecbs 17247  s cress 17274  TopSetcts 17303  t crest 17465  TopOpenctopn 17466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-tset 17316  df-rest 17467  df-topn 17468
This theorem is referenced by:  resstps  23195  submtmd  24112  subgtgp  24113  tsmssubm  24151  invrcn2  24188  ressusp  24273  ressxms  24538  ressms  24539  nrgtdrg  24714  tgioo3  24827  dfii4  24910  retopn  25413  rspectopn  33866  xrge0topn  33942  lmxrge0  33951  qqtopn  34012
  Copyright terms: Public domain W3C validator