| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
| resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6843 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
| 2 | fvex 6843 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 3 | restco 23082 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
| 5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
| 6 | eqid 2733 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | resstset 17273 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
| 8 | incom 4158 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 9 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | 5, 9 | ressbas 17151 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
| 11 | 8, 10 | eqtrid 2780 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
| 12 | 7, 11 | oveq12d 7372 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 13 | 4, 12 | eqtrd 2768 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 14 | 9, 6 | topnval 17342 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
| 15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 16 | 14, 15 | eqtr4i 2759 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
| 17 | 16 | oveq1i 7364 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
| 18 | eqid 2733 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2733 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
| 20 | 18, 19 | topnval 17342 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
| 21 | 13, 17, 20 | 3eqtr3g 2791 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 23 | restfn 17332 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 24 | 23 | fndmi 6592 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 25 | 24 | ndmov 7538 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 26 | 22, 25 | nsyl5 159 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
| 27 | reldmress 17147 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 28 | 27 | ovprc2 7394 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
| 29 | 5, 28 | eqtrid 2780 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
| 30 | 29 | fveq2d 6834 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
| 31 | tsetid 17261 | . . . . . . 7 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 32 | 31 | str0 17104 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
| 33 | 30, 32 | eqtr4di 2786 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
| 34 | 33 | oveq1d 7369 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
| 35 | 0rest 17337 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
| 36 | 34, 20, 35 | 3eqtr3g 2791 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
| 37 | 26, 36 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 38 | 21, 37 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ∅c0 4282 × cxp 5619 ‘cfv 6488 (class class class)co 7354 ndxcnx 17108 Basecbs 17124 ↾s cress 17145 TopSetcts 17171 ↾t crest 17328 TopOpenctopn 17329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-tset 17184 df-rest 17330 df-topn 17331 |
| This theorem is referenced by: resstps 23105 submtmd 24022 subgtgp 24023 tsmssubm 24061 invrcn2 24098 ressusp 24182 ressxms 24443 ressms 24444 nrgtdrg 24611 tgioo3 24724 dfii4 24807 retopn 25309 rspectopn 33903 xrge0topn 33979 lmxrge0 33988 qqtopn 34047 |
| Copyright terms: Public domain | W3C validator |