![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version |
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6450 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
2 | fvex 6450 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
3 | restco 21346 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
4 | 1, 2, 3 | mp3an12 1579 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
6 | eqid 2825 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
7 | 5, 6 | resstset 16412 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
8 | incom 4034 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
9 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 5, 9 | ressbas 16300 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
11 | 8, 10 | syl5eq 2873 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
12 | 7, 11 | oveq12d 6928 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
13 | 4, 12 | eqtrd 2861 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
14 | 9, 6 | topnval 16455 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
16 | 14, 15 | eqtr4i 2852 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
17 | 16 | oveq1i 6920 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
18 | eqid 2825 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2825 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
20 | 18, 19 | topnval 16455 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
21 | 13, 17, 20 | 3eqtr3g 2884 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
22 | simpr 479 | . . . . 5 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
23 | 22 | con3i 152 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
24 | restfn 16445 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
25 | fndm 6227 | . . . . . 6 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ dom ↾t = (V × V) |
27 | 26 | ndmov 7083 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
28 | 23, 27 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
29 | reldmress 16296 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
30 | 29 | ovprc2 6949 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
31 | 5, 30 | syl5eq 2873 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
32 | 31 | fveq2d 6441 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
33 | df-tset 16331 | . . . . . . 7 ⊢ TopSet = Slot 9 | |
34 | 33 | str0 16281 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
35 | 32, 34 | syl6eqr 2879 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
36 | 35 | oveq1d 6925 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
37 | 0rest 16450 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
38 | 36, 20, 37 | 3eqtr3g 2884 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
39 | 28, 38 | eqtr4d 2864 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
40 | 21, 39 | pm2.61i 177 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∩ cin 3797 ∅c0 4146 × cxp 5344 dom cdm 5346 Fn wfn 6122 ‘cfv 6127 (class class class)co 6910 9c9 11420 Basecbs 16229 ↾s cress 16230 TopSetcts 16318 ↾t crest 16441 TopOpenctopn 16442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-tset 16331 df-rest 16443 df-topn 16444 |
This theorem is referenced by: resstps 21369 submtmd 22285 subgtgp 22286 tsmssubm 22323 invrcn2 22360 ressusp 22446 ressxms 22707 ressms 22708 nrgtdrg 22874 tgioo3 22985 dfii4 23064 retopn 23554 xrge0topn 30530 lmxrge0 30539 qqtopn 30596 |
Copyright terms: Public domain | W3C validator |