| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
| resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
| 2 | fvex 6889 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 3 | restco 23102 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
| 5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | resstset 17379 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
| 8 | incom 4184 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 9 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | 5, 9 | ressbas 17257 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
| 11 | 8, 10 | eqtrid 2782 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
| 12 | 7, 11 | oveq12d 7423 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 13 | 4, 12 | eqtrd 2770 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 14 | 9, 6 | topnval 17448 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
| 15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 16 | 14, 15 | eqtr4i 2761 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
| 17 | 16 | oveq1i 7415 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
| 18 | eqid 2735 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2735 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
| 20 | 18, 19 | topnval 17448 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
| 21 | 13, 17, 20 | 3eqtr3g 2793 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 23 | restfn 17438 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 24 | 23 | fndmi 6642 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 25 | 24 | ndmov 7591 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 26 | 22, 25 | nsyl5 159 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
| 27 | reldmress 17253 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 28 | 27 | ovprc2 7445 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
| 29 | 5, 28 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
| 30 | 29 | fveq2d 6880 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
| 31 | tsetid 17367 | . . . . . . 7 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 32 | 31 | str0 17208 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
| 33 | 30, 32 | eqtr4di 2788 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
| 34 | 33 | oveq1d 7420 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
| 35 | 0rest 17443 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
| 36 | 34, 20, 35 | 3eqtr3g 2793 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
| 37 | 26, 36 | eqtr4d 2773 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 38 | 21, 37 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ∅c0 4308 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ndxcnx 17212 Basecbs 17228 ↾s cress 17251 TopSetcts 17277 ↾t crest 17434 TopOpenctopn 17435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-tset 17290 df-rest 17436 df-topn 17437 |
| This theorem is referenced by: resstps 23125 submtmd 24042 subgtgp 24043 tsmssubm 24081 invrcn2 24118 ressusp 24203 ressxms 24464 ressms 24465 nrgtdrg 24632 tgioo3 24745 dfii4 24828 retopn 25331 rspectopn 33898 xrge0topn 33974 lmxrge0 33983 qqtopn 34042 |
| Copyright terms: Public domain | W3C validator |