| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
| resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
| 2 | fvex 6871 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 3 | restco 23051 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
| 5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | resstset 17328 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
| 8 | incom 4172 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | 5, 9 | ressbas 17206 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
| 11 | 8, 10 | eqtrid 2776 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
| 12 | 7, 11 | oveq12d 7405 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 13 | 4, 12 | eqtrd 2764 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 14 | 9, 6 | topnval 17397 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
| 15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 16 | 14, 15 | eqtr4i 2755 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
| 17 | 16 | oveq1i 7397 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
| 18 | eqid 2729 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2729 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
| 20 | 18, 19 | topnval 17397 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
| 21 | 13, 17, 20 | 3eqtr3g 2787 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 23 | restfn 17387 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 24 | 23 | fndmi 6622 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 25 | 24 | ndmov 7573 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 26 | 22, 25 | nsyl5 159 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
| 27 | reldmress 17202 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 28 | 27 | ovprc2 7427 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
| 29 | 5, 28 | eqtrid 2776 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
| 30 | 29 | fveq2d 6862 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
| 31 | tsetid 17316 | . . . . . . 7 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 32 | 31 | str0 17159 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
| 33 | 30, 32 | eqtr4di 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
| 34 | 33 | oveq1d 7402 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
| 35 | 0rest 17392 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
| 36 | 34, 20, 35 | 3eqtr3g 2787 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
| 37 | 26, 36 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 38 | 21, 37 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 TopSetcts 17226 ↾t crest 17383 TopOpenctopn 17384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-tset 17239 df-rest 17385 df-topn 17386 |
| This theorem is referenced by: resstps 23074 submtmd 23991 subgtgp 23992 tsmssubm 24030 invrcn2 24067 ressusp 24152 ressxms 24413 ressms 24414 nrgtdrg 24581 tgioo3 24694 dfii4 24777 retopn 25279 rspectopn 33857 xrge0topn 33933 lmxrge0 33942 qqtopn 34001 |
| Copyright terms: Public domain | W3C validator |