MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resstopn Structured version   Visualization version   GIF version

Theorem resstopn 23124
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
resstopn.1 𝐻 = (𝐾s 𝐴)
resstopn.2 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
resstopn (𝐽t 𝐴) = (TopOpen‘𝐻)

Proof of Theorem resstopn
StepHypRef Expression
1 fvex 6889 . . . . 5 (TopSet‘𝐾) ∈ V
2 fvex 6889 . . . . 5 (Base‘𝐾) ∈ V
3 restco 23102 . . . . 5 (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)))
41, 2, 3mp3an12 1453 . . . 4 (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)))
5 resstopn.1 . . . . . 6 𝐻 = (𝐾s 𝐴)
6 eqid 2735 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
75, 6resstset 17379 . . . . 5 (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻))
8 incom 4184 . . . . . 6 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
9 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
105, 9ressbas 17257 . . . . . 6 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻))
118, 10eqtrid 2782 . . . . 5 (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻))
127, 11oveq12d 7423 . . . 4 (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻)))
134, 12eqtrd 2770 . . 3 (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻)))
149, 6topnval 17448 . . . . 5 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
15 resstopn.2 . . . . 5 𝐽 = (TopOpen‘𝐾)
1614, 15eqtr4i 2761 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽
1716oveq1i 7415 . . 3 (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽t 𝐴)
18 eqid 2735 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2735 . . . 4 (TopSet‘𝐻) = (TopSet‘𝐻)
2018, 19topnval 17448 . . 3 ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻)
2113, 17, 203eqtr3g 2793 . 2 (𝐴 ∈ V → (𝐽t 𝐴) = (TopOpen‘𝐻))
22 simpr 484 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
23 restfn 17438 . . . . . 6 t Fn (V × V)
2423fndmi 6642 . . . . 5 dom ↾t = (V × V)
2524ndmov 7591 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
2622, 25nsyl5 159 . . 3 𝐴 ∈ V → (𝐽t 𝐴) = ∅)
27 reldmress 17253 . . . . . . . . 9 Rel dom ↾s
2827ovprc2 7445 . . . . . . . 8 𝐴 ∈ V → (𝐾s 𝐴) = ∅)
295, 28eqtrid 2782 . . . . . . 7 𝐴 ∈ V → 𝐻 = ∅)
3029fveq2d 6880 . . . . . 6 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅))
31 tsetid 17367 . . . . . . 7 TopSet = Slot (TopSet‘ndx)
3231str0 17208 . . . . . 6 ∅ = (TopSet‘∅)
3330, 32eqtr4di 2788 . . . . 5 𝐴 ∈ V → (TopSet‘𝐻) = ∅)
3433oveq1d 7420 . . . 4 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻)))
35 0rest 17443 . . . 4 (∅ ↾t (Base‘𝐻)) = ∅
3634, 20, 353eqtr3g 2793 . . 3 𝐴 ∈ V → (TopOpen‘𝐻) = ∅)
3726, 36eqtr4d 2773 . 2 𝐴 ∈ V → (𝐽t 𝐴) = (TopOpen‘𝐻))
3821, 37pm2.61i 182 1 (𝐽t 𝐴) = (TopOpen‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  c0 4308   × cxp 5652  cfv 6531  (class class class)co 7405  ndxcnx 17212  Basecbs 17228  s cress 17251  TopSetcts 17277  t crest 17434  TopOpenctopn 17435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-tset 17290  df-rest 17436  df-topn 17437
This theorem is referenced by:  resstps  23125  submtmd  24042  subgtgp  24043  tsmssubm  24081  invrcn2  24118  ressusp  24203  ressxms  24464  ressms  24465  nrgtdrg  24632  tgioo3  24745  dfii4  24828  retopn  25331  rspectopn  33898  xrge0topn  33974  lmxrge0  33983  qqtopn  34042
  Copyright terms: Public domain W3C validator