![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version |
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
2 | fvex 6933 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
3 | restco 23193 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
4 | 1, 2, 3 | mp3an12 1451 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
6 | eqid 2740 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
7 | 5, 6 | resstset 17424 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
8 | incom 4230 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
9 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 5, 9 | ressbas 17293 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
11 | 8, 10 | eqtrid 2792 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
12 | 7, 11 | oveq12d 7466 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
13 | 4, 12 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
14 | 9, 6 | topnval 17494 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
16 | 14, 15 | eqtr4i 2771 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
17 | 16 | oveq1i 7458 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
18 | eqid 2740 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2740 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
20 | 18, 19 | topnval 17494 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
21 | 13, 17, 20 | 3eqtr3g 2803 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
22 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
23 | restfn 17484 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
24 | 23 | fndmi 6683 | . . . . 5 ⊢ dom ↾t = (V × V) |
25 | 24 | ndmov 7634 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
26 | 22, 25 | nsyl5 159 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
27 | reldmress 17289 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
28 | 27 | ovprc2 7488 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
29 | 5, 28 | eqtrid 2792 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
30 | 29 | fveq2d 6924 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
31 | tsetid 17412 | . . . . . . 7 ⊢ TopSet = Slot (TopSet‘ndx) | |
32 | 31 | str0 17236 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
33 | 30, 32 | eqtr4di 2798 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
34 | 33 | oveq1d 7463 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
35 | 0rest 17489 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
36 | 34, 20, 35 | 3eqtr3g 2803 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
37 | 26, 36 | eqtr4d 2783 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
38 | 21, 37 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ∅c0 4352 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 TopSetcts 17317 ↾t crest 17480 TopOpenctopn 17481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-tset 17330 df-rest 17482 df-topn 17483 |
This theorem is referenced by: resstps 23216 submtmd 24133 subgtgp 24134 tsmssubm 24172 invrcn2 24209 ressusp 24294 ressxms 24559 ressms 24560 nrgtdrg 24735 tgioo3 24846 dfii4 24929 retopn 25432 rspectopn 33813 xrge0topn 33889 lmxrge0 33898 qqtopn 33957 |
Copyright terms: Public domain | W3C validator |