| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| resstopn.1 | ⊢ 𝐻 = (𝐾 ↾s 𝐴) |
| resstopn.2 | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| resstopn | ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (TopSet‘𝐾) ∈ V | |
| 2 | fvex 6835 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 3 | restco 23080 | . . . . 5 ⊢ (((TopSet‘𝐾) ∈ V ∧ (Base‘𝐾) ∈ V ∧ 𝐴 ∈ V) → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴))) |
| 5 | resstopn.1 | . . . . . 6 ⊢ 𝐻 = (𝐾 ↾s 𝐴) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 7 | 5, 6 | resstset 17269 | . . . . 5 ⊢ (𝐴 ∈ V → (TopSet‘𝐾) = (TopSet‘𝐻)) |
| 8 | incom 4159 | . . . . . 6 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | 5, 9 | ressbas 17147 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝐾)) = (Base‘𝐻)) |
| 11 | 8, 10 | eqtrid 2778 | . . . . 5 ⊢ (𝐴 ∈ V → ((Base‘𝐾) ∩ 𝐴) = (Base‘𝐻)) |
| 12 | 7, 11 | oveq12d 7364 | . . . 4 ⊢ (𝐴 ∈ V → ((TopSet‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 13 | 4, 12 | eqtrd 2766 | . . 3 ⊢ (𝐴 ∈ V → (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = ((TopSet‘𝐻) ↾t (Base‘𝐻))) |
| 14 | 9, 6 | topnval 17338 | . . . . 5 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
| 15 | resstopn.2 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 16 | 14, 15 | eqtr4i 2757 | . . . 4 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = 𝐽 |
| 17 | 16 | oveq1i 7356 | . . 3 ⊢ (((TopSet‘𝐾) ↾t (Base‘𝐾)) ↾t 𝐴) = (𝐽 ↾t 𝐴) |
| 18 | eqid 2731 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2731 | . . . 4 ⊢ (TopSet‘𝐻) = (TopSet‘𝐻) | |
| 20 | 18, 19 | topnval 17338 | . . 3 ⊢ ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (TopOpen‘𝐻) |
| 21 | 13, 17, 20 | 3eqtr3g 2789 | . 2 ⊢ (𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 23 | restfn 17328 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 24 | 23 | fndmi 6585 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 25 | 24 | ndmov 7530 | . . . 4 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 26 | 22, 25 | nsyl5 159 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = ∅) |
| 27 | reldmress 17143 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 28 | 27 | ovprc2 7386 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (𝐾 ↾s 𝐴) = ∅) |
| 29 | 5, 28 | eqtrid 2778 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → 𝐻 = ∅) |
| 30 | 29 | fveq2d 6826 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = (TopSet‘∅)) |
| 31 | tsetid 17257 | . . . . . . 7 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 32 | 31 | str0 17100 | . . . . . 6 ⊢ ∅ = (TopSet‘∅) |
| 33 | 30, 32 | eqtr4di 2784 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (TopSet‘𝐻) = ∅) |
| 34 | 33 | oveq1d 7361 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((TopSet‘𝐻) ↾t (Base‘𝐻)) = (∅ ↾t (Base‘𝐻))) |
| 35 | 0rest 17333 | . . . 4 ⊢ (∅ ↾t (Base‘𝐻)) = ∅ | |
| 36 | 34, 20, 35 | 3eqtr3g 2789 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOpen‘𝐻) = ∅) |
| 37 | 26, 36 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐽 ↾t 𝐴) = (TopOpen‘𝐻)) |
| 38 | 21, 37 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ∅c0 4283 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 TopSetcts 17167 ↾t crest 17324 TopOpenctopn 17325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-tset 17180 df-rest 17326 df-topn 17327 |
| This theorem is referenced by: resstps 23103 submtmd 24020 subgtgp 24021 tsmssubm 24059 invrcn2 24096 ressusp 24180 ressxms 24441 ressms 24442 nrgtdrg 24609 tgioo3 24722 dfii4 24805 retopn 25307 rspectopn 33878 xrge0topn 33954 lmxrge0 33963 qqtopn 34022 |
| Copyright terms: Public domain | W3C validator |