Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovass Structured version   Visualization version   GIF version

Theorem ndmaovass 42809
 Description: Any operation is associative outside its domain. In contrast to ndmovass 7152 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovass (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) )

Proof of Theorem ndmaovass
StepHypRef Expression
1 ndmaov.1 . . . . . . 7 dom 𝐹 = (𝑆 × 𝑆)
21eleq2i 2858 . . . . . 6 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 ↔ ⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ (𝑆 × 𝑆))
3 opelxp 5443 . . . . . 6 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆))
42, 3bitri 267 . . . . 5 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆))
5 aovvdm 42788 . . . . . . 7 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
61eleq2i 2858 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆))
7 opelxp 5443 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
86, 7bitri 267 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑆𝐵𝑆))
9 df-3an 1070 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
109simplbi2 493 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
118, 10sylbi 209 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
125, 11syl 17 . . . . . 6 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
1312imp 398 . . . . 5 (( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
144, 13sylbi 209 . . . 4 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))
1514con3i 152 . . 3 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ¬ ⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹)
16 ndmaov 42786 . . 3 (¬ ⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V)
1715, 16syl 17 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V)
181eleq2i 2858 . . . . . . 7 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 ↔ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆))
19 opelxp 5443 . . . . . . 7 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
2018, 19bitri 267 . . . . . 6 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
21 aovvdm 42788 . . . . . . . 8 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐹)
221eleq2i 2858 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆))
23 opelxp 5443 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐶𝑆))
2422, 23bitri 267 . . . . . . . . 9 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ (𝐵𝑆𝐶𝑆))
25 3anass 1076 . . . . . . . . . . . 12 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
2625biimpri 220 . . . . . . . . . . 11 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → (𝐴𝑆𝐵𝑆𝐶𝑆))
2726a1d 25 . . . . . . . . . 10 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
2827expcom 406 . . . . . . . . 9 ((𝐵𝑆𝐶𝑆) → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
2924, 28sylbi 209 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
3021, 29syl 17 . . . . . . 7 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
3130impcom 399 . . . . . 6 ((𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆) → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3220, 31sylbi 209 . . . . 5 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3332pm2.43i 52 . . . 4 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))
3433con3i 152 . . 3 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ¬ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹)
35 ndmaov 42786 . . 3 (¬ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V)
3634, 35syl 17 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V)
3717, 36eqtr4d 2818 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 387   ∧ w3a 1068   = wceq 1507   ∈ wcel 2050  Vcvv 3416  ⟨cop 4447   × cxp 5405  dom cdm 5407   ((caov 42721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-int 4750  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-res 5419  df-iota 6152  df-fun 6190  df-fv 6196  df-aiota 42689  df-dfat 42722  df-afv 42723  df-aov 42724 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator