Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovass Structured version   Visualization version   GIF version

Theorem ndmaovass 44585
Description: Any operation is associative outside its domain. In contrast to ndmovass 7438 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovass (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) )

Proof of Theorem ndmaovass
StepHypRef Expression
1 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
21eleq2i 2830 . . . . 5 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 ↔ ⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ (𝑆 × 𝑆))
3 opelxp 5616 . . . . 5 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆))
42, 3bitri 274 . . . 4 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆))
5 aovvdm 44564 . . . . . 6 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
61eleq2i 2830 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆))
7 opelxp 5616 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
86, 7bitri 274 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑆𝐵𝑆))
9 df-3an 1087 . . . . . . . 8 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
109simplbi2 500 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
118, 10sylbi 216 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
125, 11syl 17 . . . . 5 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐶𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
1312imp 406 . . . 4 (( ((𝐴𝐹𝐵)) ∈ 𝑆𝐶𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
144, 13sylbi 216 . . 3 (⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))
15 ndmaov 44562 . . 3 (¬ ⟨ ((𝐴𝐹𝐵)) , 𝐶⟩ ∈ dom 𝐹 → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V)
1614, 15nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V)
171eleq2i 2830 . . . . . 6 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 ↔ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆))
18 opelxp 5616 . . . . . 6 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
1917, 18bitri 274 . . . . 5 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
20 aovvdm 44564 . . . . . . 7 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐹)
211eleq2i 2830 . . . . . . . . 9 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆))
22 opelxp 5616 . . . . . . . . 9 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐶𝑆))
2321, 22bitri 274 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ (𝐵𝑆𝐶𝑆))
24 3anass 1093 . . . . . . . . . . 11 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
2524biimpri 227 . . . . . . . . . 10 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → (𝐴𝑆𝐵𝑆𝐶𝑆))
2625a1d 25 . . . . . . . . 9 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
2726expcom 413 . . . . . . . 8 ((𝐵𝑆𝐶𝑆) → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
2823, 27sylbi 216 . . . . . . 7 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
2920, 28syl 17 . . . . . 6 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → (𝐴𝑆 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))))
3029impcom 407 . . . . 5 ((𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆) → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3119, 30sylbi 216 . . . 4 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3231pm2.43i 52 . . 3 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))
33 ndmaov 44562 . . 3 (¬ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐹 → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V)
3432, 33nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V)
3516, 34eqtr4d 2781 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  dom cdm 5580   ((caov 44497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499  df-aov 44500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator