Proof of Theorem ndmaovass
Step | Hyp | Ref
| Expression |
1 | | ndmaov.1 |
. . . . . . 7
⊢ dom 𝐹 = (𝑆 × 𝑆) |
2 | 1 | eleq2i 2858 |
. . . . . 6
⊢ (〈
((𝐴𝐹𝐵)) , 𝐶〉 ∈ dom 𝐹 ↔ 〈 ((𝐴𝐹𝐵)) , 𝐶〉 ∈ (𝑆 × 𝑆)) |
3 | | opelxp 5443 |
. . . . . 6
⊢ (〈
((𝐴𝐹𝐵)) , 𝐶〉 ∈ (𝑆 × 𝑆) ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 2, 3 | bitri 267 |
. . . . 5
⊢ (〈
((𝐴𝐹𝐵)) , 𝐶〉 ∈ dom 𝐹 ↔ ( ((𝐴𝐹𝐵)) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
5 | | aovvdm 42788 |
. . . . . . 7
⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | 1 | eleq2i 2858 |
. . . . . . . . 9
⊢
(〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆)) |
7 | | opelxp 5443 |
. . . . . . . . 9
⊢
(〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
8 | 6, 7 | bitri 267 |
. . . . . . . 8
⊢
(〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
9 | | df-3an 1070 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑆)) |
10 | 9 | simplbi2 493 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
11 | 8, 10 | sylbi 209 |
. . . . . . 7
⊢
(〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐶 ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
12 | 5, 11 | syl 17 |
. . . . . 6
⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐶 ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
13 | 12 | imp 398 |
. . . . 5
⊢ ((
((𝐴𝐹𝐵)) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
14 | 4, 13 | sylbi 209 |
. . . 4
⊢ (〈
((𝐴𝐹𝐵)) , 𝐶〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
15 | 14 | con3i 152 |
. . 3
⊢ (¬
(𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ¬ 〈 ((𝐴𝐹𝐵)) , 𝐶〉 ∈ dom 𝐹) |
16 | | ndmaov 42786 |
. . 3
⊢ (¬
〈 ((𝐴𝐹𝐵)) , 𝐶〉 ∈ dom 𝐹 → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V) |
17 | 15, 16 | syl 17 |
. 2
⊢ (¬
(𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = V) |
18 | 1 | eleq2i 2858 |
. . . . . . 7
⊢
(〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 ↔ 〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ (𝑆 × 𝑆)) |
19 | | opelxp 5443 |
. . . . . . 7
⊢
(〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆)) |
20 | 18, 19 | bitri 267 |
. . . . . 6
⊢
(〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆)) |
21 | | aovvdm 42788 |
. . . . . . . 8
⊢ ( ((𝐵𝐹𝐶)) ∈ 𝑆 → 〈𝐵, 𝐶〉 ∈ dom 𝐹) |
22 | 1 | eleq2i 2858 |
. . . . . . . . . 10
⊢
(〈𝐵, 𝐶〉 ∈ dom 𝐹 ↔ 〈𝐵, 𝐶〉 ∈ (𝑆 × 𝑆)) |
23 | | opelxp 5443 |
. . . . . . . . . 10
⊢
(〈𝐵, 𝐶〉 ∈ (𝑆 × 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
24 | 22, 23 | bitri 267 |
. . . . . . . . 9
⊢
(〈𝐵, 𝐶〉 ∈ dom 𝐹 ↔ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
25 | | 3anass 1076 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
26 | 25 | biimpri 220 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
27 | 26 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
28 | 27 | expcom 406 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)))) |
29 | 24, 28 | sylbi 209 |
. . . . . . . 8
⊢
(〈𝐵, 𝐶〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)))) |
30 | 21, 29 | syl 17 |
. . . . . . 7
⊢ ( ((𝐵𝐹𝐶)) ∈ 𝑆 → (𝐴 ∈ 𝑆 → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)))) |
31 | 30 | impcom 399 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆) → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
32 | 20, 31 | sylbi 209 |
. . . . 5
⊢
(〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
33 | 32 | pm2.43i 52 |
. . . 4
⊢
(〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
34 | 33 | con3i 152 |
. . 3
⊢ (¬
(𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ¬ 〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹) |
35 | | ndmaov 42786 |
. . 3
⊢ (¬
〈𝐴, ((𝐵𝐹𝐶)) 〉 ∈ dom 𝐹 → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V) |
36 | 34, 35 | syl 17 |
. 2
⊢ (¬
(𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐹 ((𝐵𝐹𝐶)) )) = V) |
37 | 17, 36 | eqtr4d 2818 |
1
⊢ (¬
(𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) ) |