| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0lem | Structured version Visualization version GIF version | ||
| Description: A helper lemma for oe0 8437 and others. (Contributed by NM, 6-Jan-2005.) |
| Ref | Expression |
|---|---|
| oe0lem.1 | ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) |
| oe0lem.2 | ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| oe0lem | ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0lem.1 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ → 𝜓)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓)) |
| 4 | on0eln0 6363 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 6 | oe0lem.2 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) | |
| 7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 → 𝜓)) |
| 8 | 5, 7 | sylbird 260 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓)) |
| 9 | 3, 8 | pm2.61dne 3014 | 1 ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: oe0 8437 oev2 8438 oesuclem 8440 oecl 8452 odi 8494 oewordri 8507 oelim2 8510 oeoa 8512 oeoe 8514 |
| Copyright terms: Public domain | W3C validator |