MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0lem Structured version   Visualization version   GIF version

Theorem oe0lem 8550
Description: A helper lemma for oe0 8559 and others. (Contributed by NM, 6-Jan-2005.)
Hypotheses
Ref Expression
oe0lem.1 ((𝜑𝐴 = ∅) → 𝜓)
oe0lem.2 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
Assertion
Ref Expression
oe0lem ((𝐴 ∈ On ∧ 𝜑) → 𝜓)

Proof of Theorem oe0lem
StepHypRef Expression
1 oe0lem.1 . . . 4 ((𝜑𝐴 = ∅) → 𝜓)
21ex 412 . . 3 (𝜑 → (𝐴 = ∅ → 𝜓))
32adantl 481 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓))
4 on0eln0 6442 . . . 4 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6 oe0lem.2 . . . 4 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
76ex 412 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝜓))
85, 7sylbird 260 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓))
93, 8pm2.61dne 3026 1 ((𝐴 ∈ On ∧ 𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  c0 4339  Oncon0 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390
This theorem is referenced by:  oe0  8559  oev2  8560  oesuclem  8562  oecl  8574  odi  8616  oewordri  8629  oelim2  8632  oeoa  8634  oeoe  8636
  Copyright terms: Public domain W3C validator