![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oe0lem | Structured version Visualization version GIF version |
Description: A helper lemma for oe0 8528 and others. (Contributed by NM, 6-Jan-2005.) |
Ref | Expression |
---|---|
oe0lem.1 | ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) |
oe0lem.2 | ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
oe0lem | ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0lem.1 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ → 𝜓)) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓)) |
4 | on0eln0 6420 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
6 | oe0lem.2 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) | |
7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 → 𝜓)) |
8 | 5, 7 | sylbird 260 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓)) |
9 | 3, 8 | pm2.61dne 3027 | 1 ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: oe0 8528 oev2 8529 oesuclem 8531 oecl 8543 odi 8585 oewordri 8598 oelim2 8601 oeoa 8603 oeoe 8605 |
Copyright terms: Public domain | W3C validator |