MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0lem Structured version   Visualization version   GIF version

Theorem oe0lem 8477
Description: A helper lemma for oe0 8486 and others. (Contributed by NM, 6-Jan-2005.)
Hypotheses
Ref Expression
oe0lem.1 ((𝜑𝐴 = ∅) → 𝜓)
oe0lem.2 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
Assertion
Ref Expression
oe0lem ((𝐴 ∈ On ∧ 𝜑) → 𝜓)

Proof of Theorem oe0lem
StepHypRef Expression
1 oe0lem.1 . . . 4 ((𝜑𝐴 = ∅) → 𝜓)
21ex 412 . . 3 (𝜑 → (𝐴 = ∅ → 𝜓))
32adantl 481 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓))
4 on0eln0 6389 . . . 4 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6 oe0lem.2 . . . 4 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
76ex 412 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝜓))
85, 7sylbird 260 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓))
93, 8pm2.61dne 3011 1 ((𝐴 ∈ On ∧ 𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  oe0  8486  oev2  8487  oesuclem  8489  oecl  8501  odi  8543  oewordri  8556  oelim2  8559  oeoa  8561  oeoe  8563
  Copyright terms: Public domain W3C validator