MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0lem Structured version   Visualization version   GIF version

Theorem oe0lem 8519
Description: A helper lemma for oe0 8528 and others. (Contributed by NM, 6-Jan-2005.)
Hypotheses
Ref Expression
oe0lem.1 ((𝜑𝐴 = ∅) → 𝜓)
oe0lem.2 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
Assertion
Ref Expression
oe0lem ((𝐴 ∈ On ∧ 𝜑) → 𝜓)

Proof of Theorem oe0lem
StepHypRef Expression
1 oe0lem.1 . . . 4 ((𝜑𝐴 = ∅) → 𝜓)
21ex 412 . . 3 (𝜑 → (𝐴 = ∅ → 𝜓))
32adantl 481 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓))
4 on0eln0 6420 . . . 4 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6 oe0lem.2 . . . 4 (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)
76ex 412 . . 3 ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴𝜓))
85, 7sylbird 260 . 2 ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓))
93, 8pm2.61dne 3027 1 ((𝐴 ∈ On ∧ 𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  c0 4322  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by:  oe0  8528  oev2  8529  oesuclem  8531  oecl  8543  odi  8585  oewordri  8598  oelim2  8601  oeoa  8603  oeoe  8605
  Copyright terms: Public domain W3C validator