Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0lem | Structured version Visualization version GIF version |
Description: A helper lemma for oe0 8328 and others. (Contributed by NM, 6-Jan-2005.) |
Ref | Expression |
---|---|
oe0lem.1 | ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) |
oe0lem.2 | ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
oe0lem | ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0lem.1 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ → 𝜓)) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓)) |
4 | on0eln0 6318 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
6 | oe0lem.2 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) | |
7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 → 𝜓)) |
8 | 5, 7 | sylbird 259 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓)) |
9 | 3, 8 | pm2.61dne 3032 | 1 ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 Oncon0 6263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 |
This theorem is referenced by: oe0 8328 oev2 8329 oesuclem 8331 oecl 8343 odi 8386 oewordri 8399 oelim2 8402 oeoa 8404 oeoe 8406 |
Copyright terms: Public domain | W3C validator |