![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oe0lem | Structured version Visualization version GIF version |
Description: A helper lemma for oe0 7843 and others. (Contributed by NM, 6-Jan-2005.) |
Ref | Expression |
---|---|
oe0lem.1 | ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) |
oe0lem.2 | ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
oe0lem | ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0lem.1 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) | |
2 | 1 | ex 402 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ → 𝜓)) |
3 | 2 | adantl 474 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 = ∅ → 𝜓)) |
4 | on0eln0 5997 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
5 | 4 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
6 | oe0lem.2 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) | |
7 | 6 | ex 402 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (∅ ∈ 𝐴 → 𝜓)) |
8 | 5, 7 | sylbird 252 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜑) → (𝐴 ≠ ∅ → 𝜓)) |
9 | 3, 8 | pm2.61dne 3058 | 1 ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∅c0 4116 Oncon0 5942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-tr 4947 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-ord 5945 df-on 5946 |
This theorem is referenced by: oe0 7843 oev2 7844 oesuclem 7846 oecl 7858 odi 7900 oewordri 7913 oelim2 7916 oeoa 7918 oeoe 7920 |
Copyright terms: Public domain | W3C validator |