MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Visualization version   GIF version

Theorem oesuclem 8562
Description: Lemma for oesuc 8564. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1 Lim 𝑋
oesuclem.2 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
Assertion
Ref Expression
oesuclem ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝐴 = ∅ → (𝐴o suc 𝐵) = (∅ ↑o suc 𝐵))
2 oesuclem.1 . . . . . . . 8 Lim 𝑋
3 limord 6446 . . . . . . . 8 (Lim 𝑋 → Ord 𝑋)
42, 3ax-mp 5 . . . . . . 7 Ord 𝑋
5 ordelord 6408 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → Ord 𝐵)
64, 5mpan 690 . . . . . 6 (𝐵𝑋 → Ord 𝐵)
7 0elsuc 7855 . . . . . 6 (Ord 𝐵 → ∅ ∈ suc 𝐵)
86, 7syl 17 . . . . 5 (𝐵𝑋 → ∅ ∈ suc 𝐵)
9 limsuc 7870 . . . . . . 7 (Lim 𝑋 → (𝐵𝑋 ↔ suc 𝐵𝑋))
102, 9ax-mp 5 . . . . . 6 (𝐵𝑋 ↔ suc 𝐵𝑋)
11 ordelon 6410 . . . . . . . 8 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵 ∈ On)
124, 11mpan 690 . . . . . . 7 (suc 𝐵𝑋 → suc 𝐵 ∈ On)
13 oe0m1 8558 . . . . . . 7 (suc 𝐵 ∈ On → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1412, 13syl 17 . . . . . 6 (suc 𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1510, 14sylbi 217 . . . . 5 (𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
168, 15mpbid 232 . . . 4 (𝐵𝑋 → (∅ ↑o suc 𝐵) = ∅)
171, 16sylan9eqr 2797 . . 3 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ∅)
18 oveq1 7438 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
19 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
2018, 19oveq12d 7449 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) ·o 𝐴) = ((∅ ↑o 𝐵) ·o ∅))
21 ordelon 6410 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → 𝐵 ∈ On)
224, 21mpan 690 . . . . . 6 (𝐵𝑋𝐵 ∈ On)
23 oveq2 7439 . . . . . . . . 9 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
24 oe0m0 8557 . . . . . . . . . 10 (∅ ↑o ∅) = 1o
25 1on 8517 . . . . . . . . . 10 1o ∈ On
2624, 25eqeltri 2835 . . . . . . . . 9 (∅ ↑o ∅) ∈ On
2723, 26eqeltrdi 2847 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑o 𝐵) ∈ On)
2827adantl 481 . . . . . . 7 ((𝐵𝑋𝐵 = ∅) → (∅ ↑o 𝐵) ∈ On)
29 oe0m1 8558 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3022, 29syl 17 . . . . . . . . . 10 (𝐵𝑋 → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3130biimpa 476 . . . . . . . . 9 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
32 0elon 6440 . . . . . . . . 9 ∅ ∈ On
3331, 32eqeltrdi 2847 . . . . . . . 8 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3433adantll 714 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3528, 34oe0lem 8550 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵𝑋) → (∅ ↑o 𝐵) ∈ On)
3622, 35mpancom 688 . . . . 5 (𝐵𝑋 → (∅ ↑o 𝐵) ∈ On)
37 om0 8554 . . . . 5 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3836, 37syl 17 . . . 4 (𝐵𝑋 → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3920, 38sylan9eqr 2797 . . 3 ((𝐵𝑋𝐴 = ∅) → ((𝐴o 𝐵) ·o 𝐴) = ∅)
4017, 39eqtr4d 2778 . 2 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
41 oesuclem.2 . . . 4 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4241ad2antlr 727 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4310, 12sylbi 217 . . . 4 (𝐵𝑋 → suc 𝐵 ∈ On)
44 oevn0 8552 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
4543, 44sylanl2 681 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
46 ovex 7464 . . . . 5 (𝐴o 𝐵) ∈ V
47 oveq1 7438 . . . . . 6 (𝑥 = (𝐴o 𝐵) → (𝑥 ·o 𝐴) = ((𝐴o 𝐵) ·o 𝐴))
48 eqid 2735 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
49 ovex 7464 . . . . . 6 ((𝐴o 𝐵) ·o 𝐴) ∈ V
5047, 48, 49fvmpt 7016 . . . . 5 ((𝐴o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴))
5146, 50ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴)
52 oevn0 8552 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5322, 52sylanl2 681 . . . . 5 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5453fveq2d 6911 . . . 4 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5551, 54eqtr3id 2789 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ·o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5642, 45, 553eqtr4d 2785 . 2 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
5740, 56oe0lem 8550 1 ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cmpt 5231  Ord word 6385  Oncon0 6386  Lim wlim 6387  suc csuc 6388  cfv 6563  (class class class)co 7431  reccrdg 8448  1oc1o 8498   ·o comu 8503  o coe 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-omul 8510  df-oexp 8511
This theorem is referenced by:  oesuc  8564  onesuc  8567
  Copyright terms: Public domain W3C validator