MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Visualization version   GIF version

Theorem oesuclem 8581
Description: Lemma for oesuc 8583. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1 Lim 𝑋
oesuclem.2 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
Assertion
Ref Expression
oesuclem ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝐴 = ∅ → (𝐴o suc 𝐵) = (∅ ↑o suc 𝐵))
2 oesuclem.1 . . . . . . . 8 Lim 𝑋
3 limord 6455 . . . . . . . 8 (Lim 𝑋 → Ord 𝑋)
42, 3ax-mp 5 . . . . . . 7 Ord 𝑋
5 ordelord 6417 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → Ord 𝐵)
64, 5mpan 689 . . . . . 6 (𝐵𝑋 → Ord 𝐵)
7 0elsuc 7871 . . . . . 6 (Ord 𝐵 → ∅ ∈ suc 𝐵)
86, 7syl 17 . . . . 5 (𝐵𝑋 → ∅ ∈ suc 𝐵)
9 limsuc 7886 . . . . . . 7 (Lim 𝑋 → (𝐵𝑋 ↔ suc 𝐵𝑋))
102, 9ax-mp 5 . . . . . 6 (𝐵𝑋 ↔ suc 𝐵𝑋)
11 ordelon 6419 . . . . . . . 8 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵 ∈ On)
124, 11mpan 689 . . . . . . 7 (suc 𝐵𝑋 → suc 𝐵 ∈ On)
13 oe0m1 8577 . . . . . . 7 (suc 𝐵 ∈ On → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1412, 13syl 17 . . . . . 6 (suc 𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1510, 14sylbi 217 . . . . 5 (𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
168, 15mpbid 232 . . . 4 (𝐵𝑋 → (∅ ↑o suc 𝐵) = ∅)
171, 16sylan9eqr 2802 . . 3 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ∅)
18 oveq1 7455 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
19 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
2018, 19oveq12d 7466 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) ·o 𝐴) = ((∅ ↑o 𝐵) ·o ∅))
21 ordelon 6419 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → 𝐵 ∈ On)
224, 21mpan 689 . . . . . 6 (𝐵𝑋𝐵 ∈ On)
23 oveq2 7456 . . . . . . . . 9 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
24 oe0m0 8576 . . . . . . . . . 10 (∅ ↑o ∅) = 1o
25 1on 8534 . . . . . . . . . 10 1o ∈ On
2624, 25eqeltri 2840 . . . . . . . . 9 (∅ ↑o ∅) ∈ On
2723, 26eqeltrdi 2852 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑o 𝐵) ∈ On)
2827adantl 481 . . . . . . 7 ((𝐵𝑋𝐵 = ∅) → (∅ ↑o 𝐵) ∈ On)
29 oe0m1 8577 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3022, 29syl 17 . . . . . . . . . 10 (𝐵𝑋 → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3130biimpa 476 . . . . . . . . 9 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
32 0elon 6449 . . . . . . . . 9 ∅ ∈ On
3331, 32eqeltrdi 2852 . . . . . . . 8 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3433adantll 713 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3528, 34oe0lem 8569 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵𝑋) → (∅ ↑o 𝐵) ∈ On)
3622, 35mpancom 687 . . . . 5 (𝐵𝑋 → (∅ ↑o 𝐵) ∈ On)
37 om0 8573 . . . . 5 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3836, 37syl 17 . . . 4 (𝐵𝑋 → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3920, 38sylan9eqr 2802 . . 3 ((𝐵𝑋𝐴 = ∅) → ((𝐴o 𝐵) ·o 𝐴) = ∅)
4017, 39eqtr4d 2783 . 2 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
41 oesuclem.2 . . . 4 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4241ad2antlr 726 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4310, 12sylbi 217 . . . 4 (𝐵𝑋 → suc 𝐵 ∈ On)
44 oevn0 8571 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
4543, 44sylanl2 680 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
46 ovex 7481 . . . . 5 (𝐴o 𝐵) ∈ V
47 oveq1 7455 . . . . . 6 (𝑥 = (𝐴o 𝐵) → (𝑥 ·o 𝐴) = ((𝐴o 𝐵) ·o 𝐴))
48 eqid 2740 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
49 ovex 7481 . . . . . 6 ((𝐴o 𝐵) ·o 𝐴) ∈ V
5047, 48, 49fvmpt 7029 . . . . 5 ((𝐴o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴))
5146, 50ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴)
52 oevn0 8571 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5322, 52sylanl2 680 . . . . 5 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5453fveq2d 6924 . . . 4 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5551, 54eqtr3id 2794 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ·o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5642, 45, 553eqtr4d 2790 . 2 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
5740, 56oe0lem 8569 1 ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cmpt 5249  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  (class class class)co 7448  reccrdg 8465  1oc1o 8515   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oesuc  8583  onesuc  8586
  Copyright terms: Public domain W3C validator