MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Visualization version   GIF version

Theorem oesuclem 8317
Description: Lemma for oesuc 8319. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1 Lim 𝑋
oesuclem.2 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
Assertion
Ref Expression
oesuclem ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝐴 = ∅ → (𝐴o suc 𝐵) = (∅ ↑o suc 𝐵))
2 oesuclem.1 . . . . . . . 8 Lim 𝑋
3 limord 6310 . . . . . . . 8 (Lim 𝑋 → Ord 𝑋)
42, 3ax-mp 5 . . . . . . 7 Ord 𝑋
5 ordelord 6273 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → Ord 𝐵)
64, 5mpan 686 . . . . . 6 (𝐵𝑋 → Ord 𝐵)
7 0elsuc 7657 . . . . . 6 (Ord 𝐵 → ∅ ∈ suc 𝐵)
86, 7syl 17 . . . . 5 (𝐵𝑋 → ∅ ∈ suc 𝐵)
9 limsuc 7671 . . . . . . 7 (Lim 𝑋 → (𝐵𝑋 ↔ suc 𝐵𝑋))
102, 9ax-mp 5 . . . . . 6 (𝐵𝑋 ↔ suc 𝐵𝑋)
11 ordelon 6275 . . . . . . . 8 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵 ∈ On)
124, 11mpan 686 . . . . . . 7 (suc 𝐵𝑋 → suc 𝐵 ∈ On)
13 oe0m1 8313 . . . . . . 7 (suc 𝐵 ∈ On → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1412, 13syl 17 . . . . . 6 (suc 𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
1510, 14sylbi 216 . . . . 5 (𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑o suc 𝐵) = ∅))
168, 15mpbid 231 . . . 4 (𝐵𝑋 → (∅ ↑o suc 𝐵) = ∅)
171, 16sylan9eqr 2801 . . 3 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ∅)
18 oveq1 7262 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
19 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
2018, 19oveq12d 7273 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) ·o 𝐴) = ((∅ ↑o 𝐵) ·o ∅))
21 ordelon 6275 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → 𝐵 ∈ On)
224, 21mpan 686 . . . . . 6 (𝐵𝑋𝐵 ∈ On)
23 oveq2 7263 . . . . . . . . 9 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
24 oe0m0 8312 . . . . . . . . . 10 (∅ ↑o ∅) = 1o
25 1on 8274 . . . . . . . . . 10 1o ∈ On
2624, 25eqeltri 2835 . . . . . . . . 9 (∅ ↑o ∅) ∈ On
2723, 26eqeltrdi 2847 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑o 𝐵) ∈ On)
2827adantl 481 . . . . . . 7 ((𝐵𝑋𝐵 = ∅) → (∅ ↑o 𝐵) ∈ On)
29 oe0m1 8313 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3022, 29syl 17 . . . . . . . . . 10 (𝐵𝑋 → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3130biimpa 476 . . . . . . . . 9 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
32 0elon 6304 . . . . . . . . 9 ∅ ∈ On
3331, 32eqeltrdi 2847 . . . . . . . 8 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3433adantll 710 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
3528, 34oe0lem 8305 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵𝑋) → (∅ ↑o 𝐵) ∈ On)
3622, 35mpancom 684 . . . . 5 (𝐵𝑋 → (∅ ↑o 𝐵) ∈ On)
37 om0 8309 . . . . 5 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3836, 37syl 17 . . . 4 (𝐵𝑋 → ((∅ ↑o 𝐵) ·o ∅) = ∅)
3920, 38sylan9eqr 2801 . . 3 ((𝐵𝑋𝐴 = ∅) → ((𝐴o 𝐵) ·o 𝐴) = ∅)
4017, 39eqtr4d 2781 . 2 ((𝐵𝑋𝐴 = ∅) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
41 oesuclem.2 . . . 4 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4241ad2antlr 723 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
4310, 12sylbi 216 . . . 4 (𝐵𝑋 → suc 𝐵 ∈ On)
44 oevn0 8307 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
4543, 44sylanl2 677 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
46 ovex 7288 . . . . 5 (𝐴o 𝐵) ∈ V
47 oveq1 7262 . . . . . 6 (𝑥 = (𝐴o 𝐵) → (𝑥 ·o 𝐴) = ((𝐴o 𝐵) ·o 𝐴))
48 eqid 2738 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
49 ovex 7288 . . . . . 6 ((𝐴o 𝐵) ·o 𝐴) ∈ V
5047, 48, 49fvmpt 6857 . . . . 5 ((𝐴o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴))
5146, 50ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝐴o 𝐵) ·o 𝐴)
52 oevn0 8307 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5322, 52sylanl2 677 . . . . 5 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
5453fveq2d 6760 . . . 4 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(𝐴o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5551, 54eqtr3id 2793 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ·o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
5642, 45, 553eqtr4d 2788 . 2 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
5740, 56oe0lem 8305 1 ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cmpt 5153  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  (class class class)co 7255  reccrdg 8211  1oc1o 8260   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oesuc  8319  onesuc  8322
  Copyright terms: Public domain W3C validator