| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | 1, 3 | fnexd 7152 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | 2, 5 | fnexd 7152 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7618 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3901 class class class wbr 5091 Fn wfn 6476 ‘cfv 6481 ∘r cofr 7609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ofr 7611 |
| This theorem is referenced by: ofrval 7622 ofrfval2 7631 caofref 7641 caofrss 7649 caoftrn 7651 ofsubge0 12121 psrbagcon 21860 psrbagleadd1 21863 psrlidm 21897 psdmul 22079 0plef 25598 0pledm 25599 itg1ge0 25612 mbfi1fseqlem5 25645 xrge0f 25657 itg2ge0 25661 itg2lea 25670 itg2splitlem 25674 itg2monolem1 25676 itg2mono 25679 itg2i1fseqle 25680 itg2i1fseq 25681 itg2addlem 25684 itg2cnlem1 25687 fnfvor 32587 ofrco 32588 itg2addnclem 37710 |
| Copyright terms: Public domain | W3C validator |