MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7686
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
StepHypRef Expression
1 offval.1 . 2 (𝜑𝐹 Fn 𝐴)
2 offval.2 . 2 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . 3 (𝜑𝐴𝑉)
41, 3fnexd 7215 . 2 (𝜑𝐹 ∈ V)
5 offval.4 . . 3 (𝜑𝐵𝑊)
62, 5fnexd 7215 . 2 (𝜑𝐺 ∈ V)
7 offval.5 . 2 (𝐴𝐵) = 𝑆
8 offval.6 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
9 offval.7 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
101, 2, 4, 6, 7, 8, 9ofrfvalg 7684 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cin 3930   class class class wbr 5124   Fn wfn 6531  cfv 6536  r cofr 7675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ofr 7677
This theorem is referenced by:  ofrval  7688  ofrfval2  7697  caofref  7707  caofrss  7715  caoftrn  7717  ofsubge0  12244  psrbagcon  21890  psrbagleadd1  21893  psrlidm  21927  psdmul  22109  0plef  25630  0pledm  25631  itg1ge0  25644  mbfi1fseqlem5  25677  xrge0f  25689  itg2ge0  25693  itg2lea  25702  itg2splitlem  25706  itg2monolem1  25708  itg2mono  25711  itg2i1fseqle  25712  itg2i1fseq  25713  itg2addlem  25716  itg2cnlem1  25719  itg2addnclem  37700
  Copyright terms: Public domain W3C validator