MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7397
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 6957 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 587 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 6957 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 587 . . 3 (𝜑𝐺 ∈ V)
9 dmeq 5736 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
10 dmeq 5736 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
119, 10ineqan12d 4141 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
12 fveq1 6644 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6644 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13breqan12d 5046 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1511, 14raleqbidv 3354 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
16 df-ofr 7390 . . . 4 r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
1715, 16brabga 5386 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹r 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
184, 8, 17syl2anc 587 . 2 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
191fndmd 6427 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
205fndmd 6427 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
2119, 20ineq12d 4140 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
22 offval.5 . . . 4 (𝐴𝐵) = 𝑆
2321, 22eqtrdi 2849 . . 3 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
2423raleqdv 3364 . 2 (𝜑 → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
25 inss1 4155 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
2622, 25eqsstrri 3950 . . . . . 6 𝑆𝐴
2726sseli 3911 . . . . 5 (𝑥𝑆𝑥𝐴)
28 offval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
2927, 28sylan2 595 . . . 4 ((𝜑𝑥𝑆) → (𝐹𝑥) = 𝐶)
30 inss2 4156 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
3122, 30eqsstrri 3950 . . . . . 6 𝑆𝐵
3231sseli 3911 . . . . 5 (𝑥𝑆𝑥𝐵)
33 offval.7 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3432, 33sylan2 595 . . . 4 ((𝜑𝑥𝑆) → (𝐺𝑥) = 𝐷)
3529, 34breq12d 5043 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ 𝐶𝑅𝐷))
3635ralbidva 3161 . 2 (𝜑 → (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
3718, 24, 363bitrd 308 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cin 3880   class class class wbr 5030  dom cdm 5519   Fn wfn 6319  cfv 6324  r cofr 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ofr 7390
This theorem is referenced by:  ofrval  7399  ofrfval2  7407  caofref  7415  caofrss  7422  caoftrn  7424  ofsubge0  11624  pwsle  16757  pwsleval  16758  psrbaglesupp  20606  psrbagcon  20609  psrbaglefi  20610  psrlidm  20641  0plef  24276  0pledm  24277  itg1ge0  24290  mbfi1fseqlem5  24323  xrge0f  24335  itg2ge0  24339  itg2lea  24348  itg2splitlem  24352  itg2monolem1  24354  itg2mono  24357  itg2i1fseqle  24358  itg2i1fseq  24359  itg2addlem  24362  itg2cnlem1  24365  itg2addnclem  35108
  Copyright terms: Public domain W3C validator