![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version |
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
Ref | Expression |
---|---|
ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | 1, 3 | fnexd 7230 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | 2, 5 | fnexd 7230 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7693 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 ∩ cin 3943 class class class wbr 5149 Fn wfn 6544 ‘cfv 6549 ∘r cofr 7684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ofr 7686 |
This theorem is referenced by: ofrval 7697 ofrfval2 7706 caofref 7715 caofrss 7722 caoftrn 7724 ofsubge0 12244 psrbaglesuppOLD 21875 psrbagcon 21880 psrbagconOLD 21881 psrbaglefiOLD 21883 psrbagleadd1 21886 psrlidm 21924 psdmul 22113 0plef 25645 0pledm 25646 itg1ge0 25659 mbfi1fseqlem5 25693 xrge0f 25705 itg2ge0 25709 itg2lea 25718 itg2splitlem 25722 itg2monolem1 25724 itg2mono 25727 itg2i1fseqle 25728 itg2i1fseq 25729 itg2addlem 25732 itg2cnlem1 25735 itg2addnclem 37275 |
Copyright terms: Public domain | W3C validator |