Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version |
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
Ref | Expression |
---|---|
ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | 1, 3 | fnexd 7094 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | 2, 5 | fnexd 7094 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7541 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 class class class wbr 5074 Fn wfn 6428 ‘cfv 6433 ∘r cofr 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ofr 7534 |
This theorem is referenced by: ofrval 7545 ofrfval2 7554 caofref 7562 caofrss 7569 caoftrn 7571 ofsubge0 11972 psrbaglesuppOLD 21128 psrbagcon 21133 psrbagconOLD 21134 psrbaglefiOLD 21136 psrlidm 21172 0plef 24836 0pledm 24837 itg1ge0 24850 mbfi1fseqlem5 24884 xrge0f 24896 itg2ge0 24900 itg2lea 24909 itg2splitlem 24913 itg2monolem1 24915 itg2mono 24918 itg2i1fseqle 24919 itg2i1fseq 24920 itg2addlem 24923 itg2cnlem1 24926 itg2addnclem 35828 |
Copyright terms: Public domain | W3C validator |