MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7620
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
StepHypRef Expression
1 offval.1 . 2 (𝜑𝐹 Fn 𝐴)
2 offval.2 . 2 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . 3 (𝜑𝐴𝑉)
41, 3fnexd 7152 . 2 (𝜑𝐹 ∈ V)
5 offval.4 . . 3 (𝜑𝐵𝑊)
62, 5fnexd 7152 . 2 (𝜑𝐺 ∈ V)
7 offval.5 . 2 (𝐴𝐵) = 𝑆
8 offval.6 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
9 offval.7 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
101, 2, 4, 6, 7, 8, 9ofrfvalg 7618 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901   class class class wbr 5091   Fn wfn 6476  cfv 6481  r cofr 7609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ofr 7611
This theorem is referenced by:  ofrval  7622  ofrfval2  7631  caofref  7641  caofrss  7649  caoftrn  7651  ofsubge0  12121  psrbagcon  21860  psrbagleadd1  21863  psrlidm  21897  psdmul  22079  0plef  25598  0pledm  25599  itg1ge0  25612  mbfi1fseqlem5  25645  xrge0f  25657  itg2ge0  25661  itg2lea  25670  itg2splitlem  25674  itg2monolem1  25676  itg2mono  25679  itg2i1fseqle  25680  itg2i1fseq  25681  itg2addlem  25684  itg2cnlem1  25687  fnfvor  32587  ofrco  32588  itg2addnclem  37710
  Copyright terms: Public domain W3C validator