| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | 1, 3 | fnexd 7192 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | 2, 5 | fnexd 7192 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7661 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∩ cin 3913 class class class wbr 5107 Fn wfn 6506 ‘cfv 6511 ∘r cofr 7652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ofr 7654 |
| This theorem is referenced by: ofrval 7665 ofrfval2 7674 caofref 7684 caofrss 7692 caoftrn 7694 ofsubge0 12185 psrbagcon 21834 psrbagleadd1 21837 psrlidm 21871 psdmul 22053 0plef 25573 0pledm 25574 itg1ge0 25587 mbfi1fseqlem5 25620 xrge0f 25632 itg2ge0 25636 itg2lea 25645 itg2splitlem 25649 itg2monolem1 25651 itg2mono 25654 itg2i1fseqle 25655 itg2i1fseq 25656 itg2addlem 25659 itg2cnlem1 25662 itg2addnclem 37665 |
| Copyright terms: Public domain | W3C validator |