| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | 1, 3 | fnexd 7215 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | 2, 5 | fnexd 7215 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7684 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 class class class wbr 5124 Fn wfn 6531 ‘cfv 6536 ∘r cofr 7675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ofr 7677 |
| This theorem is referenced by: ofrval 7688 ofrfval2 7697 caofref 7707 caofrss 7715 caoftrn 7717 ofsubge0 12244 psrbagcon 21890 psrbagleadd1 21893 psrlidm 21927 psdmul 22109 0plef 25630 0pledm 25631 itg1ge0 25644 mbfi1fseqlem5 25677 xrge0f 25689 itg2ge0 25693 itg2lea 25702 itg2splitlem 25706 itg2monolem1 25708 itg2mono 25711 itg2i1fseqle 25712 itg2i1fseq 25713 itg2addlem 25716 itg2cnlem1 25719 itg2addnclem 37700 |
| Copyright terms: Public domain | W3C validator |