MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7626
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
StepHypRef Expression
1 offval.1 . 2 (𝜑𝐹 Fn 𝐴)
2 offval.2 . 2 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . 3 (𝜑𝐴𝑉)
41, 3fnexd 7158 . 2 (𝜑𝐹 ∈ V)
5 offval.4 . . 3 (𝜑𝐵𝑊)
62, 5fnexd 7158 . 2 (𝜑𝐺 ∈ V)
7 offval.5 . 2 (𝐴𝐵) = 𝑆
8 offval.6 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
9 offval.7 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
101, 2, 4, 6, 7, 8, 9ofrfvalg 7624 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cin 3897   class class class wbr 5093   Fn wfn 6481  cfv 6486  r cofr 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ofr 7617
This theorem is referenced by:  ofrval  7628  ofrfval2  7637  caofref  7647  caofrss  7655  caoftrn  7657  ofsubge0  12131  psrbagcon  21864  psrbagleadd1  21867  psrlidm  21900  psdmul  22082  0plef  25601  0pledm  25602  itg1ge0  25615  mbfi1fseqlem5  25648  xrge0f  25660  itg2ge0  25664  itg2lea  25673  itg2splitlem  25677  itg2monolem1  25679  itg2mono  25682  itg2i1fseqle  25683  itg2i1fseq  25684  itg2addlem  25687  itg2cnlem1  25690  fnfvor  32594  ofrco  32595  esplyind  33613  itg2addnclem  37731
  Copyright terms: Public domain W3C validator