MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7680
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
StepHypRef Expression
1 offval.1 . 2 (𝜑𝐹 Fn 𝐴)
2 offval.2 . 2 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . 3 (𝜑𝐴𝑉)
41, 3fnexd 7220 . 2 (𝜑𝐹 ∈ V)
5 offval.4 . . 3 (𝜑𝐵𝑊)
62, 5fnexd 7220 . 2 (𝜑𝐺 ∈ V)
7 offval.5 . 2 (𝐴𝐵) = 𝑆
8 offval.6 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
9 offval.7 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
101, 2, 4, 6, 7, 8, 9ofrfvalg 7678 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cin 3948   class class class wbr 5149   Fn wfn 6539  cfv 6544  r cofr 7669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ofr 7671
This theorem is referenced by:  ofrval  7682  ofrfval2  7691  caofref  7699  caofrss  7706  caoftrn  7708  ofsubge0  12211  psrbaglesuppOLD  21478  psrbagcon  21483  psrbagconOLD  21484  psrbaglefiOLD  21486  psrlidm  21523  0plef  25189  0pledm  25190  itg1ge0  25203  mbfi1fseqlem5  25237  xrge0f  25249  itg2ge0  25253  itg2lea  25262  itg2splitlem  25266  itg2monolem1  25268  itg2mono  25271  itg2i1fseqle  25272  itg2i1fseq  25273  itg2addlem  25276  itg2cnlem1  25279  itg2addnclem  36539
  Copyright terms: Public domain W3C validator