MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Structured version   Visualization version   GIF version

Theorem ofrfval 7663
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
StepHypRef Expression
1 offval.1 . 2 (𝜑𝐹 Fn 𝐴)
2 offval.2 . 2 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . 3 (𝜑𝐴𝑉)
41, 3fnexd 7192 . 2 (𝜑𝐹 ∈ V)
5 offval.4 . . 3 (𝜑𝐵𝑊)
62, 5fnexd 7192 . 2 (𝜑𝐺 ∈ V)
7 offval.5 . 2 (𝐴𝐵) = 𝑆
8 offval.6 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
9 offval.7 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
101, 2, 4, 6, 7, 8, 9ofrfvalg 7661 1 (𝜑 → (𝐹r 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cin 3913   class class class wbr 5107   Fn wfn 6506  cfv 6511  r cofr 7652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ofr 7654
This theorem is referenced by:  ofrval  7665  ofrfval2  7674  caofref  7684  caofrss  7692  caoftrn  7694  ofsubge0  12185  psrbagcon  21834  psrbagleadd1  21837  psrlidm  21871  psdmul  22053  0plef  25573  0pledm  25574  itg1ge0  25587  mbfi1fseqlem5  25620  xrge0f  25632  itg2ge0  25636  itg2lea  25645  itg2splitlem  25649  itg2monolem1  25651  itg2mono  25654  itg2i1fseqle  25655  itg2i1fseq  25656  itg2addlem  25659  itg2cnlem1  25662  itg2addnclem  37665
  Copyright terms: Public domain W3C validator