|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ofrfval | Structured version Visualization version GIF version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) | 
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 | 
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | 
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | 
| Ref | Expression | 
|---|---|
| ofrfval | ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | offval.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | 1, 3 | fnexd 7239 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) | 
| 5 | offval.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | 2, 5 | fnexd 7239 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) | 
| 7 | offval.5 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 8 | offval.6 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 9 | offval.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 10 | 1, 2, 4, 6, 7, 8, 9 | ofrfvalg 7706 | 1 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ∩ cin 3949 class class class wbr 5142 Fn wfn 6555 ‘cfv 6560 ∘r cofr 7697 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ofr 7699 | 
| This theorem is referenced by: ofrval 7710 ofrfval2 7719 caofref 7729 caofrss 7737 caoftrn 7739 ofsubge0 12266 psrbagcon 21946 psrbagleadd1 21949 psrlidm 21983 psdmul 22171 0plef 25708 0pledm 25709 itg1ge0 25722 mbfi1fseqlem5 25755 xrge0f 25767 itg2ge0 25771 itg2lea 25780 itg2splitlem 25784 itg2monolem1 25786 itg2mono 25789 itg2i1fseqle 25790 itg2i1fseq 25791 itg2addlem 25794 itg2cnlem1 25797 itg2addnclem 37679 | 
| Copyright terms: Public domain | W3C validator |