MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval2 Structured version   Visualization version   GIF version

Theorem cardval2 9887
Description: An alternate version of the value of the cardinal number of a set. Compare cardval 10440. This theorem could be used to give a simpler definition of card in place of df-card 9835. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
cardval2 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardval2
StepHypRef Expression
1 cardon 9840 . . . . . 6 (card‘𝐴) ∈ On
21oneli 6422 . . . . 5 (𝑥 ∈ (card‘𝐴) → 𝑥 ∈ On)
32pm4.71ri 560 . . . 4 (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴)))
4 cardsdomel 9870 . . . . . 6 ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
54ancoms 458 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
65pm5.32da 579 . . . 4 (𝐴 ∈ dom card → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴))))
73, 6bitr4id 290 . . 3 (𝐴 ∈ dom card → (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥𝐴)))
87eqabdv 2861 . 2 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)})
9 df-rab 3395 . 2 {𝑥 ∈ On ∣ 𝑥𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
108, 9eqtr4di 2782 1 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3394   class class class wbr 5092  dom cdm 5619  Oncon0 6307  cfv 6482  csdm 8871  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-card 9835
This theorem is referenced by:  ondomon  10457  alephsuc3  10474
  Copyright terms: Public domain W3C validator