![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardval2 | Structured version Visualization version GIF version |
Description: An alternate version of the value of the cardinal number of a set. Compare cardval 10523. This theorem could be used to give a simpler definition of card in place of df-card 9916. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
Ref | Expression |
---|---|
cardval2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9921 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
2 | 1 | oneli 6467 | . . . . 5 ⊢ (𝑥 ∈ (card‘𝐴) → 𝑥 ∈ On) |
3 | 2 | pm4.71ri 561 | . . . 4 ⊢ (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴))) |
4 | cardsdomel 9951 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
5 | 4 | ancoms 459 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
6 | 5 | pm5.32da 579 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝑥 ∈ On ∧ 𝑥 ≺ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴)))) |
7 | 3, 6 | bitr4id 289 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴))) |
8 | 7 | eqabdv 2866 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)}) |
9 | df-rab 3432 | . 2 ⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)} | |
10 | 8, 9 | eqtr4di 2789 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2708 {crab 3431 class class class wbr 5141 dom cdm 5669 Oncon0 6353 ‘cfv 6532 ≺ csdm 8921 cardccrd 9912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6356 df-on 6357 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-card 9916 |
This theorem is referenced by: ondomon 10540 alephsuc3 10557 |
Copyright terms: Public domain | W3C validator |