| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardval2 | Structured version Visualization version GIF version | ||
| Description: An alternate version of the value of the cardinal number of a set. Compare cardval 10565. This theorem could be used to give a simpler definition of card in place of df-card 9958. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| cardval2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9963 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
| 2 | 1 | oneli 6473 | . . . . 5 ⊢ (𝑥 ∈ (card‘𝐴) → 𝑥 ∈ On) |
| 3 | 2 | pm4.71ri 560 | . . . 4 ⊢ (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴))) |
| 4 | cardsdomel 9993 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
| 5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
| 6 | 5 | pm5.32da 579 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝑥 ∈ On ∧ 𝑥 ≺ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴)))) |
| 7 | 3, 6 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴))) |
| 8 | 7 | eqabdv 2869 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)}) |
| 9 | df-rab 3421 | . 2 ⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)} | |
| 10 | 8, 9 | eqtr4di 2789 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 class class class wbr 5124 dom cdm 5659 Oncon0 6357 ‘cfv 6536 ≺ csdm 8963 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-card 9958 |
| This theorem is referenced by: ondomon 10582 alephsuc3 10599 |
| Copyright terms: Public domain | W3C validator |