| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardval2 | Structured version Visualization version GIF version | ||
| Description: An alternate version of the value of the cardinal number of a set. Compare cardval 10437. This theorem could be used to give a simpler definition of card in place of df-card 9832. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| cardval2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9837 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
| 2 | 1 | oneli 6421 | . . . . 5 ⊢ (𝑥 ∈ (card‘𝐴) → 𝑥 ∈ On) |
| 3 | 2 | pm4.71ri 560 | . . . 4 ⊢ (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴))) |
| 4 | cardsdomel 9867 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
| 5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
| 6 | 5 | pm5.32da 579 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝑥 ∈ On ∧ 𝑥 ≺ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴)))) |
| 7 | 3, 6 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴))) |
| 8 | 7 | eqabdv 2864 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)}) |
| 9 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)} | |
| 10 | 8, 9 | eqtr4di 2784 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 class class class wbr 5089 dom cdm 5614 Oncon0 6306 ‘cfv 6481 ≺ csdm 8868 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9832 |
| This theorem is referenced by: ondomon 10454 alephsuc3 10471 |
| Copyright terms: Public domain | W3C validator |