| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardval2 | Structured version Visualization version GIF version | ||
| Description: An alternate version of the value of the cardinal number of a set. Compare cardval 10440. This theorem could be used to give a simpler definition of card in place of df-card 9835. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| cardval2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9840 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
| 2 | 1 | oneli 6422 | . . . . 5 ⊢ (𝑥 ∈ (card‘𝐴) → 𝑥 ∈ On) |
| 3 | 2 | pm4.71ri 560 | . . . 4 ⊢ (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴))) |
| 4 | cardsdomel 9870 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
| 5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
| 6 | 5 | pm5.32da 579 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝑥 ∈ On ∧ 𝑥 ≺ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ (card‘𝐴)))) |
| 7 | 3, 6 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ (card‘𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴))) |
| 8 | 7 | eqabdv 2861 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)}) |
| 9 | df-rab 3395 | . 2 ⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ≺ 𝐴)} | |
| 10 | 8, 9 | eqtr4di 2782 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3394 class class class wbr 5092 dom cdm 5619 Oncon0 6307 ‘cfv 6482 ≺ csdm 8871 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-card 9835 |
| This theorem is referenced by: ondomon 10457 alephsuc3 10474 |
| Copyright terms: Public domain | W3C validator |