![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrcut | Structured version Visualization version GIF version |
Description: A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrcut | ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayelon 27702 | . . . . 5 ⊢ ( bday ‘𝑋) ∈ On | |
2 | 1 | oneli 6477 | . . . 4 ⊢ (𝑏 ∈ ( bday ‘𝑋) → 𝑏 ∈ On) |
3 | madebday 27819 | . . . . 5 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday ‘𝑦) ⊆ 𝑏)) | |
4 | 3 | biimprd 247 | . . . 4 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
5 | 2, 4 | sylan 579 | . . 3 ⊢ ((𝑏 ∈ ( bday ‘𝑋) ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
6 | 5 | rgen2 3192 | . 2 ⊢ ∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) |
7 | madebdaylemlrcut 27818 | . 2 ⊢ ((∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
8 | 6, 7 | mpan 689 | 1 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ⊆ wss 3944 Oncon0 6363 ‘cfv 6542 (class class class)co 7414 No csur 27566 bday cbday 27568 |s cscut 27708 M cmade 27762 L cleft 27765 R cright 27766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27569 df-slt 27570 df-bday 27571 df-sslt 27707 df-scut 27709 df-made 27767 df-old 27768 df-left 27770 df-right 27771 |
This theorem is referenced by: scutfo 27823 sltn0 27824 sltlpss 27826 slelss 27827 cutpos 27846 addsrid 27874 addsasslem1 27913 addsasslem2 27914 negsid 27946 mulsrid 28006 addsdilem1 28044 mulsasslem1 28056 mulsasslem2 28057 elons2 28144 onscutleft 28148 |
Copyright terms: Public domain | W3C validator |