MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrcut Structured version   Visualization version   GIF version

Theorem lrcut 27822
Description: A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
lrcut (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)

Proof of Theorem lrcut
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayelon 27702 . . . . 5 ( bday 𝑋) ∈ On
21oneli 6477 . . . 4 (𝑏 ∈ ( bday 𝑋) → 𝑏 ∈ On)
3 madebday 27819 . . . . 5 ((𝑏 ∈ On ∧ 𝑦 No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday 𝑦) ⊆ 𝑏))
43biimprd 247 . . . 4 ((𝑏 ∈ On ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
52, 4sylan 579 . . 3 ((𝑏 ∈ ( bday 𝑋) ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
65rgen2 3192 . 2 𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))
7 madebdaylemlrcut 27818 . 2 ((∀𝑏 ∈ ( bday 𝑋)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
86, 7mpan 689 1 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  wss 3944  Oncon0 6363  cfv 6542  (class class class)co 7414   No csur 27566   bday cbday 27568   |s cscut 27708   M cmade 27762   L cleft 27765   R cright 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27569  df-slt 27570  df-bday 27571  df-sslt 27707  df-scut 27709  df-made 27767  df-old 27768  df-left 27770  df-right 27771
This theorem is referenced by:  scutfo  27823  sltn0  27824  sltlpss  27826  slelss  27827  cutpos  27846  addsrid  27874  addsasslem1  27913  addsasslem2  27914  negsid  27946  mulsrid  28006  addsdilem1  28044  mulsasslem1  28056  mulsasslem2  28057  elons2  28144  onscutleft  28148
  Copyright terms: Public domain W3C validator