| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrcut | Structured version Visualization version GIF version | ||
| Description: A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrcut | ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayelon 27718 | . . . . 5 ⊢ ( bday ‘𝑋) ∈ On | |
| 2 | 1 | oneli 6428 | . . . 4 ⊢ (𝑏 ∈ ( bday ‘𝑋) → 𝑏 ∈ On) |
| 3 | madebday 27848 | . . . . 5 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday ‘𝑦) ⊆ 𝑏)) | |
| 4 | 3 | biimprd 248 | . . . 4 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 5 | 2, 4 | sylan 580 | . . 3 ⊢ ((𝑏 ∈ ( bday ‘𝑋) ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 6 | 5 | rgen2 3173 | . 2 ⊢ ∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) |
| 7 | madebdaylemlrcut 27847 | . 2 ⊢ ((∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | |
| 8 | 6, 7 | mpan 690 | 1 ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 Oncon0 6313 ‘cfv 6488 (class class class)co 7354 No csur 27581 bday cbday 27583 |s cscut 27725 M cmade 27786 L cleft 27789 R cright 27790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-1o 8393 df-2o 8394 df-no 27584 df-slt 27585 df-bday 27586 df-sslt 27724 df-scut 27726 df-made 27791 df-old 27792 df-left 27794 df-right 27795 |
| This theorem is referenced by: scutfo 27853 sltn0 27854 sltlpss 27856 slelss 27857 bdayiun 27863 cutpos 27880 addsrid 27910 addsasslem1 27949 addsasslem2 27950 negsid 27986 mulsrid 28055 addsdilem1 28093 mulsasslem1 28105 mulsasslem2 28106 elons2 28198 onscutleft 28203 onscutlt 28204 n0sfincut 28285 halfcut 28381 |
| Copyright terms: Public domain | W3C validator |