MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucmin Structured version   Visualization version   GIF version

Theorem onsucmin 7823
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 6373 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
2 ordelsuc 7822 . . . . 5 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
31, 2sylan2 593 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
43rabbidva 3426 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
54inteqd 4931 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
6 onsucb 7819 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
7 intmin 4948 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
86, 7sylbi 217 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
95, 8eqtr2d 2770 1 (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  {crab 3419  wss 3931   cint 4926  Ord word 6362  Oncon0 6363  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-suc 6369
This theorem is referenced by:  naddsuc2  8721  ranksnb  9849  nadd1suc  43367
  Copyright terms: Public domain W3C validator