MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucmin Structured version   Visualization version   GIF version

Theorem onsucmin 7751
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 6316 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
2 ordelsuc 7750 . . . . 5 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
31, 2sylan2 593 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
43rabbidva 3401 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
54inteqd 4900 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
6 onsucb 7747 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
7 intmin 4916 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
86, 7sylbi 217 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
95, 8eqtr2d 2767 1 (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  wss 3897   cint 4895  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  naddsuc2  8616  ranksnb  9720  nadd1suc  43433
  Copyright terms: Public domain W3C validator