| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucmin | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| onsucmin | ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 2 | ordelsuc 7753 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
| 4 | 3 | rabbidva 3401 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
| 5 | 4 | inteqd 4901 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
| 6 | onsucb 7750 | . . 3 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
| 7 | intmin 4918 | . . 3 ⊢ (suc 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) | |
| 8 | 6, 7 | sylbi 217 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) |
| 9 | 5, 8 | eqtr2d 2765 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 ∩ cint 4896 Ord word 6306 Oncon0 6307 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 |
| This theorem is referenced by: naddsuc2 8619 ranksnb 9723 nadd1suc 43365 |
| Copyright terms: Public domain | W3C validator |