MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Structured version   Visualization version   GIF version

Theorem ranksnb 9871
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))

Proof of Theorem ranksnb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6903 . . . . . 6 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
21eleq1d 2814 . . . . 5 (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
32ralsng 4683 . . . 4 (𝐴 (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
43rabbidv 3436 . . 3 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
54inteqd 4962 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
6 snwf 9853 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
7 rankval3b 9870 . . 3 ({𝐴} ∈ (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
86, 7syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
9 rankon 9839 . . 3 (rank‘𝐴) ∈ On
10 onsucmin 7835 . . 3 ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
119, 10mp1i 13 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
125, 8, 113eqtr4d 2779 1 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2100  wral 3054  {crab 3428  {csn 4634   cuni 4916   cint 4957  cima 5687  Oncon0 6378  suc csuc 6380  cfv 6556  𝑅1cr1 9806  rankcrnk 9807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-10 2133  ax-11 2150  ax-12 2170  ax-ext 2700  ax-sep 5305  ax-nul 5312  ax-pow 5371  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2062  df-mo 2532  df-eu 2561  df-clab 2707  df-cleq 2721  df-clel 2806  df-nfc 2881  df-ne 2934  df-ral 3055  df-rex 3064  df-reu 3374  df-rab 3429  df-v 3474  df-sbc 3788  df-csb 3904  df-dif 3961  df-un 3963  df-in 3965  df-ss 3975  df-pss 3978  df-nul 4334  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4917  df-int 4958  df-iun 5006  df-br 5155  df-opab 5217  df-mpt 5238  df-tr 5272  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6315  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7430  df-om 7882  df-2nd 8009  df-frecs 8300  df-wrecs 8331  df-recs 8405  df-rdg 8444  df-r1 9808  df-rank 9809
This theorem is referenced by:  rankprb  9895  ranksn  9898  rankcf  10821  rankaltopb  35888
  Copyright terms: Public domain W3C validator