Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ranksnb | Structured version Visualization version GIF version |
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
ranksnb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6651 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴)) | |
2 | 1 | eleq1d 2835 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
3 | 2 | ralsng 4563 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
4 | 3 | rabbidv 3390 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
5 | 4 | inteqd 4836 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
6 | snwf 9256 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
7 | rankval3b 9273 | . . 3 ⊢ ({𝐴} ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) |
9 | rankon 9242 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
10 | onsucmin 7528 | . . 3 ⊢ ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) | |
11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
12 | 5, 8, 11 | 3eqtr4d 2804 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3068 {crab 3072 {csn 4515 ∪ cuni 4791 ∩ cint 4831 “ cima 5520 Oncon0 6162 suc csuc 6164 ‘cfv 6328 𝑅1cr1 9209 rankcrnk 9210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-r1 9211 df-rank 9212 |
This theorem is referenced by: rankprb 9298 ranksn 9301 rankcf 10222 rankaltopb 33815 |
Copyright terms: Public domain | W3C validator |