MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Structured version   Visualization version   GIF version

Theorem ranksnb 9720
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))

Proof of Theorem ranksnb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
21eleq1d 2816 . . . . 5 (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
32ralsng 4625 . . . 4 (𝐴 (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
43rabbidv 3402 . . 3 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
54inteqd 4900 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
6 snwf 9702 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
7 rankval3b 9719 . . 3 ({𝐴} ∈ (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
86, 7syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
9 rankon 9688 . . 3 (rank‘𝐴) ∈ On
10 onsucmin 7751 . . 3 ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
119, 10mp1i 13 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
125, 8, 113eqtr4d 2776 1 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {crab 3395  {csn 4573   cuni 4856   cint 4895  cima 5617  Oncon0 6306  suc csuc 6308  cfv 6481  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  rankprb  9744  ranksn  9747  rankcf  10668  rankaltopb  36021
  Copyright terms: Public domain W3C validator