MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Structured version   Visualization version   GIF version

Theorem ranksnb 9250
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))

Proof of Theorem ranksnb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6669 . . . . . 6 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
21eleq1d 2902 . . . . 5 (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
32ralsng 4612 . . . 4 (𝐴 (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥))
43rabbidv 3486 . . 3 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
54inteqd 4879 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
6 snwf 9232 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
7 rankval3b 9249 . . 3 ({𝐴} ∈ (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
86, 7syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥})
9 rankon 9218 . . 3 (rank‘𝐴) ∈ On
10 onsucmin 7529 . . 3 ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
119, 10mp1i 13 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥})
125, 8, 113eqtr4d 2871 1 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wral 3143  {crab 3147  {csn 4564   cuni 4837   cint 4874  cima 5557  Oncon0 6190  suc csuc 6192  cfv 6354  𝑅1cr1 9185  rankcrnk 9186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-r1 9187  df-rank 9188
This theorem is referenced by:  rankprb  9274  ranksn  9277  rankcf  10193  rankaltopb  33343
  Copyright terms: Public domain W3C validator