![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ranksnb | Structured version Visualization version GIF version |
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
ranksnb | β’ (π΄ β βͺ (π 1 β On) β (rankβ{π΄}) = suc (rankβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6885 | . . . . . 6 β’ (π¦ = π΄ β (rankβπ¦) = (rankβπ΄)) | |
2 | 1 | eleq1d 2812 | . . . . 5 β’ (π¦ = π΄ β ((rankβπ¦) β π₯ β (rankβπ΄) β π₯)) |
3 | 2 | ralsng 4672 | . . . 4 β’ (π΄ β βͺ (π 1 β On) β (βπ¦ β {π΄} (rankβπ¦) β π₯ β (rankβπ΄) β π₯)) |
4 | 3 | rabbidv 3434 | . . 3 β’ (π΄ β βͺ (π 1 β On) β {π₯ β On β£ βπ¦ β {π΄} (rankβπ¦) β π₯} = {π₯ β On β£ (rankβπ΄) β π₯}) |
5 | 4 | inteqd 4948 | . 2 β’ (π΄ β βͺ (π 1 β On) β β© {π₯ β On β£ βπ¦ β {π΄} (rankβπ¦) β π₯} = β© {π₯ β On β£ (rankβπ΄) β π₯}) |
6 | snwf 9806 | . . 3 β’ (π΄ β βͺ (π 1 β On) β {π΄} β βͺ (π 1 β On)) | |
7 | rankval3b 9823 | . . 3 β’ ({π΄} β βͺ (π 1 β On) β (rankβ{π΄}) = β© {π₯ β On β£ βπ¦ β {π΄} (rankβπ¦) β π₯}) | |
8 | 6, 7 | syl 17 | . 2 β’ (π΄ β βͺ (π 1 β On) β (rankβ{π΄}) = β© {π₯ β On β£ βπ¦ β {π΄} (rankβπ¦) β π₯}) |
9 | rankon 9792 | . . 3 β’ (rankβπ΄) β On | |
10 | onsucmin 7806 | . . 3 β’ ((rankβπ΄) β On β suc (rankβπ΄) = β© {π₯ β On β£ (rankβπ΄) β π₯}) | |
11 | 9, 10 | mp1i 13 | . 2 β’ (π΄ β βͺ (π 1 β On) β suc (rankβπ΄) = β© {π₯ β On β£ (rankβπ΄) β π₯}) |
12 | 5, 8, 11 | 3eqtr4d 2776 | 1 β’ (π΄ β βͺ (π 1 β On) β (rankβ{π΄}) = suc (rankβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwral 3055 {crab 3426 {csn 4623 βͺ cuni 4902 β© cint 4943 β cima 5672 Oncon0 6358 suc csuc 6360 βcfv 6537 π 1cr1 9759 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-r1 9761 df-rank 9762 |
This theorem is referenced by: rankprb 9848 ranksn 9851 rankcf 10774 rankaltopb 35484 |
Copyright terms: Public domain | W3C validator |