MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Structured version   Visualization version   GIF version

Theorem ranksnb 9770
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜{𝐴}) = suc (rankβ€˜π΄))

Proof of Theorem ranksnb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6847 . . . . . 6 (𝑦 = 𝐴 β†’ (rankβ€˜π‘¦) = (rankβ€˜π΄))
21eleq1d 2823 . . . . 5 (𝑦 = 𝐴 β†’ ((rankβ€˜π‘¦) ∈ π‘₯ ↔ (rankβ€˜π΄) ∈ π‘₯))
32ralsng 4639 . . . 4 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (βˆ€π‘¦ ∈ {𝐴} (rankβ€˜π‘¦) ∈ π‘₯ ↔ (rankβ€˜π΄) ∈ π‘₯))
43rabbidv 3418 . . 3 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ {𝐴} (rankβ€˜π‘¦) ∈ π‘₯} = {π‘₯ ∈ On ∣ (rankβ€˜π΄) ∈ π‘₯})
54inteqd 4917 . 2 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ {𝐴} (rankβ€˜π‘¦) ∈ π‘₯} = ∩ {π‘₯ ∈ On ∣ (rankβ€˜π΄) ∈ π‘₯})
6 snwf 9752 . . 3 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ {𝐴} ∈ βˆͺ (𝑅1 β€œ On))
7 rankval3b 9769 . . 3 ({𝐴} ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜{𝐴}) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ {𝐴} (rankβ€˜π‘¦) ∈ π‘₯})
86, 7syl 17 . 2 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜{𝐴}) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ {𝐴} (rankβ€˜π‘¦) ∈ π‘₯})
9 rankon 9738 . . 3 (rankβ€˜π΄) ∈ On
10 onsucmin 7761 . . 3 ((rankβ€˜π΄) ∈ On β†’ suc (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ (rankβ€˜π΄) ∈ π‘₯})
119, 10mp1i 13 . 2 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ suc (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ (rankβ€˜π΄) ∈ π‘₯})
125, 8, 113eqtr4d 2787 1 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜{𝐴}) = suc (rankβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  {crab 3410  {csn 4591  βˆͺ cuni 4870  βˆ© cint 4912   β€œ cima 5641  Oncon0 6322  suc csuc 6324  β€˜cfv 6501  π‘…1cr1 9705  rankcrnk 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-r1 9707  df-rank 9708
This theorem is referenced by:  rankprb  9794  ranksn  9797  rankcf  10720  rankaltopb  34593
  Copyright terms: Public domain W3C validator