| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ranksnb | Structured version Visualization version GIF version | ||
| Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| ranksnb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6903 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴)) | |
| 2 | 1 | eleq1d 2814 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
| 3 | 2 | ralsng 4683 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
| 4 | 3 | rabbidv 3436 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
| 5 | 4 | inteqd 4962 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
| 6 | snwf 9853 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
| 7 | rankval3b 9870 | . . 3 ⊢ ({𝐴} ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) |
| 9 | rankon 9839 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
| 10 | onsucmin 7835 | . . 3 ⊢ ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
| 12 | 5, 8, 11 | 3eqtr4d 2779 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2100 ∀wral 3054 {crab 3428 {csn 4634 ∪ cuni 4916 ∩ cint 4957 “ cima 5687 Oncon0 6378 suc csuc 6380 ‘cfv 6556 𝑅1cr1 9806 rankcrnk 9807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-sep 5305 ax-nul 5312 ax-pow 5371 ax-pr 5435 ax-un 7748 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-ral 3055 df-rex 3064 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3788 df-csb 3904 df-dif 3961 df-un 3963 df-in 3965 df-ss 3975 df-pss 3978 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4917 df-int 4958 df-iun 5006 df-br 5155 df-opab 5217 df-mpt 5238 df-tr 5272 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6315 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7430 df-om 7882 df-2nd 8009 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-r1 9808 df-rank 9809 |
| This theorem is referenced by: rankprb 9895 ranksn 9898 rankcf 10821 rankaltopb 35888 |
| Copyright terms: Public domain | W3C validator |