Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxeldm | Structured version Visualization version GIF version |
Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
mpoxeldm | ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxeldm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
2 | 1 | dmmpossx 7892 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) |
3 | elfvdm 6800 | . . . 4 ⊢ (𝑁 ∈ (𝐹‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) | |
4 | df-ov 7271 | . . . 4 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
5 | 3, 4 | eleq2s 2858 | . . 3 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) |
6 | 2, 5 | sselid 3923 | . 2 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷)) |
7 | nfcsb1v 3861 | . . 3 ⊢ Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐷 | |
8 | csbeq1a 3850 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐷 = ⦋𝑋 / 𝑥⦌𝐷) | |
9 | 7, 8 | opeliunxp2f 8010 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) ↔ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
10 | 6, 9 | sylib 217 | 1 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⦋csb 3836 {csn 4566 〈cop 4572 ∪ ciun 4929 × cxp 5586 dom cdm 5588 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: mpoxneldm 8012 nbgrcl 27683 |
Copyright terms: Public domain | W3C validator |