| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxeldm | Structured version Visualization version GIF version | ||
| Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| mpoxeldm | ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxeldm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 2 | 1 | dmmpossx 8048 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) |
| 3 | elfvdm 6898 | . . . 4 ⊢ (𝑁 ∈ (𝐹‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) | |
| 4 | df-ov 7393 | . . . 4 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 5 | 3, 4 | eleq2s 2847 | . . 3 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) |
| 6 | 2, 5 | sselid 3947 | . 2 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷)) |
| 7 | nfcsb1v 3889 | . . 3 ⊢ Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐷 | |
| 8 | csbeq1a 3879 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐷 = ⦋𝑋 / 𝑥⦌𝐷) | |
| 9 | 7, 8 | opeliunxp2f 8192 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) ↔ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 10 | 6, 9 | sylib 218 | 1 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3865 {csn 4592 〈cop 4598 ∪ ciun 4958 × cxp 5639 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: mpoxneldm 8194 nbgrcl 29269 clnbgrcl 47826 |
| Copyright terms: Public domain | W3C validator |