MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxeldm Structured version   Visualization version   GIF version

Theorem mpoxeldm 8226
Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxeldm (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxeldm
StepHypRef Expression
1 mpoxeldm.f . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21dmmpossx 8080 . . 3 dom 𝐹 𝑥𝐶 ({𝑥} × 𝐷)
3 elfvdm 6938 . . . 4 (𝑁 ∈ (𝐹‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹)
4 df-ov 7427 . . . 4 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
53, 4eleq2s 2844 . . 3 (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹)
62, 5sselid 3977 . 2 (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ 𝑥𝐶 ({𝑥} × 𝐷))
7 nfcsb1v 3917 . . 3 𝑥𝑋 / 𝑥𝐷
8 csbeq1a 3906 . . 3 (𝑥 = 𝑋𝐷 = 𝑋 / 𝑥𝐷)
97, 8opeliunxp2f 8225 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑥𝐶 ({𝑥} × 𝐷) ↔ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylib 217 1 (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  csb 3892  {csn 4633  cop 4639   ciun 5001   × cxp 5680  dom cdm 5682  cfv 6554  (class class class)co 7424  cmpo 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004
This theorem is referenced by:  mpoxneldm  8227  nbgrcl  29271  clnbgrcl  47393
  Copyright terms: Public domain W3C validator