![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxeldm | Structured version Visualization version GIF version |
Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
mpoxeldm | ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxeldm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
2 | 1 | dmmpossx 8051 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) |
3 | elfvdm 6922 | . . . 4 ⊢ (𝑁 ∈ (𝐹‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹) | |
4 | df-ov 7408 | . . . 4 ⊢ (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩) | |
5 | 3, 4 | eleq2s 2845 | . . 3 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹) |
6 | 2, 5 | sselid 3975 | . 2 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷)) |
7 | nfcsb1v 3913 | . . 3 ⊢ Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐷 | |
8 | csbeq1a 3902 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐷 = ⦋𝑋 / 𝑥⦌𝐷) | |
9 | 7, 8 | opeliunxp2f 8196 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) ↔ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
10 | 6, 9 | sylib 217 | 1 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⦋csb 3888 {csn 4623 ⟨cop 4629 ∪ ciun 4990 × cxp 5667 dom cdm 5669 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: mpoxneldm 8198 nbgrcl 29100 |
Copyright terms: Public domain | W3C validator |