| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxeldm | Structured version Visualization version GIF version | ||
| Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| mpoxeldm | ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxeldm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 2 | 1 | dmmpossx 8070 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) |
| 3 | elfvdm 6918 | . . . 4 ⊢ (𝑁 ∈ (𝐹‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) | |
| 4 | df-ov 7413 | . . . 4 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 5 | 3, 4 | eleq2s 2853 | . . 3 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) |
| 6 | 2, 5 | sselid 3961 | . 2 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷)) |
| 7 | nfcsb1v 3903 | . . 3 ⊢ Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐷 | |
| 8 | csbeq1a 3893 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐷 = ⦋𝑋 / 𝑥⦌𝐷) | |
| 9 | 7, 8 | opeliunxp2f 8214 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) ↔ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 10 | 6, 9 | sylib 218 | 1 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3879 {csn 4606 〈cop 4612 ∪ ciun 4972 × cxp 5657 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: mpoxneldm 8216 nbgrcl 29319 clnbgrcl 47802 |
| Copyright terms: Public domain | W3C validator |