MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxeldm Structured version   Visualization version   GIF version

Theorem mpoxeldm 8235
Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxeldm (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxeldm
StepHypRef Expression
1 mpoxeldm.f . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21dmmpossx 8090 . . 3 dom 𝐹 𝑥𝐶 ({𝑥} × 𝐷)
3 elfvdm 6944 . . . 4 (𝑁 ∈ (𝐹‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹)
4 df-ov 7434 . . . 4 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
53, 4eleq2s 2857 . . 3 (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐹)
62, 5sselid 3993 . 2 (𝑁 ∈ (𝑋𝐹𝑌) → ⟨𝑋, 𝑌⟩ ∈ 𝑥𝐶 ({𝑥} × 𝐷))
7 nfcsb1v 3933 . . 3 𝑥𝑋 / 𝑥𝐷
8 csbeq1a 3922 . . 3 (𝑥 = 𝑋𝐷 = 𝑋 / 𝑥𝐷)
97, 8opeliunxp2f 8234 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑥𝐶 ({𝑥} × 𝐷) ↔ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylib 218 1 (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  csb 3908  {csn 4631  cop 4637   ciun 4996   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  mpoxneldm  8236  nbgrcl  29367  clnbgrcl  47746
  Copyright terms: Public domain W3C validator