MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgffibi Structured version   Visualization version   GIF version

Theorem usgredgffibi 27594
Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
usgredgffibi.I 𝐼 = (iEdg‘𝐺)
usgredgffibi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgredgffibi (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin))

Proof of Theorem usgredgffibi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgredgffibi.e . . . 4 𝐸 = (Edg‘𝐺)
2 edgval 27322 . . . 4 (Edg‘𝐺) = ran (iEdg‘𝐺)
3 usgredgffibi.I . . . . . 6 𝐼 = (iEdg‘𝐺)
43eqcomi 2747 . . . . 5 (iEdg‘𝐺) = 𝐼
54rneqi 5835 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
61, 2, 53eqtri 2770 . . 3 𝐸 = ran 𝐼
76eleq1i 2829 . 2 (𝐸 ∈ Fin ↔ ran 𝐼 ∈ Fin)
83fvexi 6770 . . 3 𝐼 ∈ V
9 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 3usgrfs 27430 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
11 f1vrnfibi 9034 . . 3 ((𝐼 ∈ V ∧ 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) → (𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin))
128, 10, 11sylancr 586 . 2 (𝐺 ∈ USGraph → (𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin))
137, 12bitr4id 289 1 (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530  dom cdm 5580  ran crn 5581  1-1wf1 6415  cfv 6418  Fincfn 8691  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-usgr 27424
This theorem is referenced by:  fusgrfisbase  27598  fusgrfisstep  27599  fusgrfis  27600  fusgrfupgrfs  27601  vtxdgfusgrf  27767
  Copyright terms: Public domain W3C validator