![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppnid | Structured version Visualization version GIF version |
Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppnid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
oppnid | ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hpg.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | hpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | opphl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 729 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG) |
6 | oppnid.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 729 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝑃) |
8 | opphl.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | opphl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
10 | 9 | ad3antrrr 729 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿) |
11 | simplr 768 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝐷) | |
12 | 1, 8, 3, 5, 10, 11 | tglnpt 28575 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝑃) |
13 | simpr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴)) | |
14 | 1, 2, 3, 5, 7, 12, 13 | axtgbtwnid 28492 | . . . 4 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡) |
15 | 14, 11 | eqeltrd 2844 | . . 3 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝐷) |
16 | hpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
17 | 1, 2, 3, 16, 6, 6 | islnopp 28765 | . . . 4 ⊢ (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)))) |
18 | 17 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)) |
19 | 15, 18 | r19.29a 3168 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → 𝐴 ∈ 𝐷) |
20 | 17 | simprbda 498 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷)) |
21 | 20 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ¬ 𝐴 ∈ 𝐷) |
22 | 19, 21 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 {copab 5228 ran crn 5701 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-trkgb 28475 df-trkg 28479 |
This theorem is referenced by: lnoppnhpg 28790 |
Copyright terms: Public domain | W3C validator |