MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppnid Structured version   Visualization version   GIF version

Theorem oppnid 26111
Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppnid.1 (𝜑𝐴𝑃)
Assertion
Ref Expression
oppnid (𝜑 → ¬ 𝐴𝑂𝐴)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppnid
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.d . . . . 5 = (dist‘𝐺)
3 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 opphl.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 720 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG)
6 oppnid.1 . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 720 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝑃)
8 opphl.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
109ad3antrrr 720 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
11 simplr 759 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝐷)
121, 8, 3, 5, 10, 11tglnpt 25917 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝑃)
13 simpr 479 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴))
141, 2, 3, 5, 7, 12, 13axtgbtwnid 25834 . . . 4 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡)
1514, 11eqeltrd 2859 . . 3 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝐷)
16 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
171, 2, 3, 16, 6, 6islnopp 26104 . . . 4 (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))))
1817simplbda 495 . . 3 ((𝜑𝐴𝑂𝐴) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))
1915, 18r19.29a 3264 . 2 ((𝜑𝐴𝑂𝐴) → 𝐴𝐷)
2017simprbda 494 . . 3 ((𝜑𝐴𝑂𝐴) → (¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷))
2120simpld 490 . 2 ((𝜑𝐴𝑂𝐴) → ¬ 𝐴𝐷)
2219, 21pm2.65da 807 1 (𝜑 → ¬ 𝐴𝑂𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wrex 3091  cdif 3789   class class class wbr 4888  {copab 4950  ran crn 5358  cfv 6137  (class class class)co 6924  Basecbs 16266  distcds 16358  TarskiGcstrkg 25798  Itvcitv 25804  LineGclng 25805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-cnv 5365  df-dm 5367  df-rn 5368  df-iota 6101  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-trkgb 25817  df-trkg 25821
This theorem is referenced by:  lnoppnhpg  26129
  Copyright terms: Public domain W3C validator