| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppnid | Structured version Visualization version GIF version | ||
| Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpg.d | ⊢ − = (dist‘𝐺) |
| hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
| opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| oppnid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| oppnid | ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | hpg.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | hpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | opphl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG) |
| 6 | oppnid.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝑃) |
| 8 | opphl.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | opphl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 10 | 9 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿) |
| 11 | simplr 768 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝐷) | |
| 12 | 1, 8, 3, 5, 10, 11 | tglnpt 28520 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝑃) |
| 13 | simpr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴)) | |
| 14 | 1, 2, 3, 5, 7, 12, 13 | axtgbtwnid 28437 | . . . 4 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡) |
| 15 | 14, 11 | eqeltrd 2829 | . . 3 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝐷) |
| 16 | hpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 17 | 1, 2, 3, 16, 6, 6 | islnopp 28710 | . . . 4 ⊢ (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)))) |
| 18 | 17 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)) |
| 19 | 15, 18 | r19.29a 3138 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → 𝐴 ∈ 𝐷) |
| 20 | 17 | simprbda 498 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷)) |
| 21 | 20 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ¬ 𝐴 ∈ 𝐷) |
| 22 | 19, 21 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ∖ cdif 3897 class class class wbr 5089 {copab 5151 ran crn 5615 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 distcds 17162 TarskiGcstrkg 28398 Itvcitv 28404 LineGclng 28405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6433 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-trkgb 28420 df-trkg 28424 |
| This theorem is referenced by: lnoppnhpg 28735 |
| Copyright terms: Public domain | W3C validator |