MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppnid Structured version   Visualization version   GIF version

Theorem oppnid 28734
Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppnid.1 (𝜑𝐴𝑃)
Assertion
Ref Expression
oppnid (𝜑 → ¬ 𝐴𝑂𝐴)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppnid
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.d . . . . 5 = (dist‘𝐺)
3 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 opphl.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG)
6 oppnid.1 . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝑃)
8 opphl.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
11 simplr 768 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝐷)
121, 8, 3, 5, 10, 11tglnpt 28537 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝑃)
13 simpr 484 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴))
141, 2, 3, 5, 7, 12, 13axtgbtwnid 28454 . . . 4 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡)
1514, 11eqeltrd 2833 . . 3 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝐷)
16 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
171, 2, 3, 16, 6, 6islnopp 28727 . . . 4 (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))))
1817simplbda 499 . . 3 ((𝜑𝐴𝑂𝐴) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))
1915, 18r19.29a 3142 . 2 ((𝜑𝐴𝑂𝐴) → 𝐴𝐷)
2017simprbda 498 . . 3 ((𝜑𝐴𝑂𝐴) → (¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷))
2120simpld 494 . 2 ((𝜑𝐴𝑂𝐴) → ¬ 𝐴𝐷)
2219, 21pm2.65da 816 1 (𝜑 → ¬ 𝐴𝑂𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3058  cdif 3896   class class class wbr 5095  {copab 5157  ran crn 5622  cfv 6489  (class class class)co 7355  Basecbs 17130  distcds 17180  TarskiGcstrkg 28415  Itvcitv 28421  LineGclng 28422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-cnv 5629  df-dm 5631  df-rn 5632  df-iota 6445  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-trkgb 28437  df-trkg 28441
This theorem is referenced by:  lnoppnhpg  28752
  Copyright terms: Public domain W3C validator