| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version | ||
| Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | 2, 3, 4 | tglnunirn 28529 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
| 7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | elssuni 4891 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
| 10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 11 | 9, 10 | sseldd 3931 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
| 12 | 6, 11 | sseldd 3931 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4860 ran crn 5622 ‘cfv 6488 Basecbs 17124 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6444 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-trkg 28434 |
| This theorem is referenced by: mirln 28657 mirln2 28658 perpcom 28694 perpneq 28695 ragperp 28698 foot 28703 footne 28704 footeq 28705 hlperpnel 28706 perprag 28707 perpdragALT 28708 perpdrag 28709 colperpexlem3 28713 oppne3 28724 oppcom 28725 oppnid 28727 opphllem1 28728 opphllem2 28729 opphllem3 28730 opphllem4 28731 opphllem5 28732 opphllem6 28733 oppperpex 28734 opphl 28735 outpasch 28736 lnopp2hpgb 28744 hpgerlem 28746 colopp 28750 colhp 28751 lmieu 28765 lmimid 28775 lnperpex 28784 trgcopy 28785 trgcopyeulem 28786 |
| Copyright terms: Public domain | W3C validator |