Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version |
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
Ref | Expression |
---|---|
tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | 2, 3, 4 | tglnunirn 26813 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | elssuni 4868 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
11 | 9, 10 | sseldd 3918 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
12 | 6, 11 | sseldd 3918 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkg 26718 |
This theorem is referenced by: mirln 26941 mirln2 26942 perpcom 26978 perpneq 26979 ragperp 26982 foot 26987 footne 26988 footeq 26989 hlperpnel 26990 perprag 26991 perpdragALT 26992 perpdrag 26993 colperpexlem3 26997 oppne3 27008 oppcom 27009 oppnid 27011 opphllem1 27012 opphllem2 27013 opphllem3 27014 opphllem4 27015 opphllem5 27016 opphllem6 27017 oppperpex 27018 opphl 27019 outpasch 27020 lnopp2hpgb 27028 hpgerlem 27030 colopp 27034 colhp 27035 lmieu 27049 lmimid 27059 lnperpex 27068 trgcopy 27069 trgcopyeulem 27070 |
Copyright terms: Public domain | W3C validator |