| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version | ||
| Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | 2, 3, 4 | tglnunirn 28511 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
| 7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | elssuni 4891 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
| 10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 11 | 9, 10 | sseldd 3938 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
| 12 | 6, 11 | sseldd 3938 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 Basecbs 17138 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-trkg 28416 |
| This theorem is referenced by: mirln 28639 mirln2 28640 perpcom 28676 perpneq 28677 ragperp 28680 foot 28685 footne 28686 footeq 28687 hlperpnel 28688 perprag 28689 perpdragALT 28690 perpdrag 28691 colperpexlem3 28695 oppne3 28706 oppcom 28707 oppnid 28709 opphllem1 28710 opphllem2 28711 opphllem3 28712 opphllem4 28713 opphllem5 28714 opphllem6 28715 oppperpex 28716 opphl 28717 outpasch 28718 lnopp2hpgb 28726 hpgerlem 28728 colopp 28732 colhp 28733 lmieu 28747 lmimid 28757 lnperpex 28766 trgcopy 28767 trgcopyeulem 28768 |
| Copyright terms: Public domain | W3C validator |