MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt Structured version   Visualization version   GIF version

Theorem tglnpt 26814
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
tglnpt.g (𝜑𝐺 ∈ TarskiG)
tglnpt.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt (𝜑𝑋𝑃)

Proof of Theorem tglnpt
StepHypRef Expression
1 tglnpt.g . . 3 (𝜑𝐺 ∈ TarskiG)
2 tglng.p . . . 4 𝑃 = (Base‘𝐺)
3 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
52, 3, 4tglnunirn 26813 . . 3 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
61, 5syl 17 . 2 (𝜑 ran 𝐿𝑃)
7 tglnpt.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 elssuni 4868 . . . 4 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
97, 8syl 17 . . 3 (𝜑𝐴 ran 𝐿)
10 tglnpt.x . . 3 (𝜑𝑋𝐴)
119, 10sseldd 3918 . 2 (𝜑𝑋 ran 𝐿)
126, 11sseldd 3918 1 (𝜑𝑋𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883   cuni 4836  ran crn 5581  cfv 6418  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-trkg 26718
This theorem is referenced by:  mirln  26941  mirln2  26942  perpcom  26978  perpneq  26979  ragperp  26982  foot  26987  footne  26988  footeq  26989  hlperpnel  26990  perprag  26991  perpdragALT  26992  perpdrag  26993  colperpexlem3  26997  oppne3  27008  oppcom  27009  oppnid  27011  opphllem1  27012  opphllem2  27013  opphllem3  27014  opphllem4  27015  opphllem5  27016  opphllem6  27017  oppperpex  27018  opphl  27019  outpasch  27020  lnopp2hpgb  27028  hpgerlem  27030  colopp  27034  colhp  27035  lmieu  27049  lmimid  27059  lnperpex  27068  trgcopy  27069  trgcopyeulem  27070
  Copyright terms: Public domain W3C validator