MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt Structured version   Visualization version   GIF version

Theorem tglnpt 28528
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
tglnpt.g (𝜑𝐺 ∈ TarskiG)
tglnpt.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt (𝜑𝑋𝑃)

Proof of Theorem tglnpt
StepHypRef Expression
1 tglnpt.g . . 3 (𝜑𝐺 ∈ TarskiG)
2 tglng.p . . . 4 𝑃 = (Base‘𝐺)
3 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
52, 3, 4tglnunirn 28527 . . 3 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
61, 5syl 17 . 2 (𝜑 ran 𝐿𝑃)
7 tglnpt.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 elssuni 4889 . . . 4 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
97, 8syl 17 . . 3 (𝜑𝐴 ran 𝐿)
10 tglnpt.x . . 3 (𝜑𝑋𝐴)
119, 10sseldd 3935 . 2 (𝜑𝑋 ran 𝐿)
126, 11sseldd 3935 1 (𝜑𝑋𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3902   cuni 4859  ran crn 5617  cfv 6481  Basecbs 17120  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-trkg 28432
This theorem is referenced by:  mirln  28655  mirln2  28656  perpcom  28692  perpneq  28693  ragperp  28696  foot  28701  footne  28702  footeq  28703  hlperpnel  28704  perprag  28705  perpdragALT  28706  perpdrag  28707  colperpexlem3  28711  oppne3  28722  oppcom  28723  oppnid  28725  opphllem1  28726  opphllem2  28727  opphllem3  28728  opphllem4  28729  opphllem5  28730  opphllem6  28731  oppperpex  28732  opphl  28733  outpasch  28734  lnopp2hpgb  28742  hpgerlem  28744  colopp  28748  colhp  28749  lmieu  28763  lmimid  28773  lnperpex  28782  trgcopy  28783  trgcopyeulem  28784
  Copyright terms: Public domain W3C validator