MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt Structured version   Visualization version   GIF version

Theorem tglnpt 28512
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
tglnpt.g (𝜑𝐺 ∈ TarskiG)
tglnpt.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt (𝜑𝑋𝑃)

Proof of Theorem tglnpt
StepHypRef Expression
1 tglnpt.g . . 3 (𝜑𝐺 ∈ TarskiG)
2 tglng.p . . . 4 𝑃 = (Base‘𝐺)
3 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
52, 3, 4tglnunirn 28511 . . 3 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
61, 5syl 17 . 2 (𝜑 ran 𝐿𝑃)
7 tglnpt.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 elssuni 4891 . . . 4 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
97, 8syl 17 . . 3 (𝜑𝐴 ran 𝐿)
10 tglnpt.x . . 3 (𝜑𝑋𝐴)
119, 10sseldd 3938 . 2 (𝜑𝑋 ran 𝐿)
126, 11sseldd 3938 1 (𝜑𝑋𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905   cuni 4861  ran crn 5624  cfv 6486  Basecbs 17138  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634  df-iota 6442  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-trkg 28416
This theorem is referenced by:  mirln  28639  mirln2  28640  perpcom  28676  perpneq  28677  ragperp  28680  foot  28685  footne  28686  footeq  28687  hlperpnel  28688  perprag  28689  perpdragALT  28690  perpdrag  28691  colperpexlem3  28695  oppne3  28706  oppcom  28707  oppnid  28709  opphllem1  28710  opphllem2  28711  opphllem3  28712  opphllem4  28713  opphllem5  28714  opphllem6  28715  oppperpex  28716  opphl  28717  outpasch  28718  lnopp2hpgb  28726  hpgerlem  28728  colopp  28732  colhp  28733  lmieu  28747  lmimid  28757  lnperpex  28766  trgcopy  28767  trgcopyeulem  28768
  Copyright terms: Public domain W3C validator