| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version | ||
| Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | 2, 3, 4 | tglnunirn 28527 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
| 7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | elssuni 4913 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
| 10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 11 | 9, 10 | sseldd 3959 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
| 12 | 6, 11 | sseldd 3959 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 Basecbs 17228 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-trkg 28432 |
| This theorem is referenced by: mirln 28655 mirln2 28656 perpcom 28692 perpneq 28693 ragperp 28696 foot 28701 footne 28702 footeq 28703 hlperpnel 28704 perprag 28705 perpdragALT 28706 perpdrag 28707 colperpexlem3 28711 oppne3 28722 oppcom 28723 oppnid 28725 opphllem1 28726 opphllem2 28727 opphllem3 28728 opphllem4 28729 opphllem5 28730 opphllem6 28731 oppperpex 28732 opphl 28733 outpasch 28734 lnopp2hpgb 28742 hpgerlem 28744 colopp 28748 colhp 28749 lmieu 28763 lmimid 28773 lnperpex 28782 trgcopy 28783 trgcopyeulem 28784 |
| Copyright terms: Public domain | W3C validator |