![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version |
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
Ref | Expression |
---|---|
tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | 2, 3, 4 | tglnunirn 28571 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | elssuni 4942 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
11 | 9, 10 | sseldd 3996 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
12 | 6, 11 | sseldd 3996 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 Basecbs 17245 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-trkg 28476 |
This theorem is referenced by: mirln 28699 mirln2 28700 perpcom 28736 perpneq 28737 ragperp 28740 foot 28745 footne 28746 footeq 28747 hlperpnel 28748 perprag 28749 perpdragALT 28750 perpdrag 28751 colperpexlem3 28755 oppne3 28766 oppcom 28767 oppnid 28769 opphllem1 28770 opphllem2 28771 opphllem3 28772 opphllem4 28773 opphllem5 28774 opphllem6 28775 oppperpex 28776 opphl 28777 outpasch 28778 lnopp2hpgb 28786 hpgerlem 28788 colopp 28792 colhp 28793 lmieu 28807 lmimid 28817 lnperpex 28826 trgcopy 28827 trgcopyeulem 28828 |
Copyright terms: Public domain | W3C validator |