| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version | ||
| Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | 2, 3, 4 | tglnunirn 28527 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
| 7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | elssuni 4889 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
| 10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 11 | 9, 10 | sseldd 3935 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
| 12 | 6, 11 | sseldd 3935 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 Basecbs 17120 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-trkg 28432 |
| This theorem is referenced by: mirln 28655 mirln2 28656 perpcom 28692 perpneq 28693 ragperp 28696 foot 28701 footne 28702 footeq 28703 hlperpnel 28704 perprag 28705 perpdragALT 28706 perpdrag 28707 colperpexlem3 28711 oppne3 28722 oppcom 28723 oppnid 28725 opphllem1 28726 opphllem2 28727 opphllem3 28728 opphllem4 28729 opphllem5 28730 opphllem6 28731 oppperpex 28732 opphl 28733 outpasch 28734 lnopp2hpgb 28742 hpgerlem 28744 colopp 28748 colhp 28749 lmieu 28763 lmimid 28773 lnperpex 28782 trgcopy 28783 trgcopyeulem 28784 |
| Copyright terms: Public domain | W3C validator |