![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version |
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
Ref | Expression |
---|---|
tglng.p | β’ π = (BaseβπΊ) |
tglng.l | β’ πΏ = (LineGβπΊ) |
tglng.i | β’ πΌ = (ItvβπΊ) |
tglnpt.g | β’ (π β πΊ β TarskiG) |
tglnpt.a | β’ (π β π΄ β ran πΏ) |
tglnpt.x | β’ (π β π β π΄) |
Ref | Expression |
---|---|
tglnpt | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglnpt.g | . . 3 β’ (π β πΊ β TarskiG) | |
2 | tglng.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | tglng.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
4 | tglng.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | 2, 3, 4 | tglnunirn 27789 | . . 3 β’ (πΊ β TarskiG β βͺ ran πΏ β π) |
6 | 1, 5 | syl 17 | . 2 β’ (π β βͺ ran πΏ β π) |
7 | tglnpt.a | . . . 4 β’ (π β π΄ β ran πΏ) | |
8 | elssuni 4941 | . . . 4 β’ (π΄ β ran πΏ β π΄ β βͺ ran πΏ) | |
9 | 7, 8 | syl 17 | . . 3 β’ (π β π΄ β βͺ ran πΏ) |
10 | tglnpt.x | . . 3 β’ (π β π β π΄) | |
11 | 9, 10 | sseldd 3983 | . 2 β’ (π β π β βͺ ran πΏ) |
12 | 6, 11 | sseldd 3983 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β wss 3948 βͺ cuni 4908 ran crn 5677 βcfv 6541 Basecbs 17141 TarskiGcstrkg 27668 Itvcitv 27674 LineGclng 27675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-iota 6493 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-trkg 27694 |
This theorem is referenced by: mirln 27917 mirln2 27918 perpcom 27954 perpneq 27955 ragperp 27958 foot 27963 footne 27964 footeq 27965 hlperpnel 27966 perprag 27967 perpdragALT 27968 perpdrag 27969 colperpexlem3 27973 oppne3 27984 oppcom 27985 oppnid 27987 opphllem1 27988 opphllem2 27989 opphllem3 27990 opphllem4 27991 opphllem5 27992 opphllem6 27993 oppperpex 27994 opphl 27995 outpasch 27996 lnopp2hpgb 28004 hpgerlem 28006 colopp 28010 colhp 28011 lmieu 28025 lmimid 28035 lnperpex 28044 trgcopy 28045 trgcopyeulem 28046 |
Copyright terms: Public domain | W3C validator |