| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version | ||
| Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | 2, 3, 4 | tglnunirn 28482 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
| 7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | elssuni 4904 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
| 10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 11 | 9, 10 | sseldd 3950 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
| 12 | 6, 11 | sseldd 3950 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 Basecbs 17186 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-trkg 28387 |
| This theorem is referenced by: mirln 28610 mirln2 28611 perpcom 28647 perpneq 28648 ragperp 28651 foot 28656 footne 28657 footeq 28658 hlperpnel 28659 perprag 28660 perpdragALT 28661 perpdrag 28662 colperpexlem3 28666 oppne3 28677 oppcom 28678 oppnid 28680 opphllem1 28681 opphllem2 28682 opphllem3 28683 opphllem4 28684 opphllem5 28685 opphllem6 28686 oppperpex 28687 opphl 28688 outpasch 28689 lnopp2hpgb 28697 hpgerlem 28699 colopp 28703 colhp 28704 lmieu 28718 lmimid 28728 lnperpex 28737 trgcopy 28738 trgcopyeulem 28739 |
| Copyright terms: Public domain | W3C validator |