![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnoppnhpg | Structured version Visualization version GIF version |
Description: If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnoppnhpg.1 | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
lnoppnhpg | ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2772 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | ishpg.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | ishpg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oppnid 26228 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑂𝐵) |
10 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | lnoppnhpg.1 | . . 3 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
12 | 1, 3, 5, 4, 7, 6, 10, 8, 8, 11 | lnopp2hpgb 26245 | . 2 ⊢ (𝜑 → (𝐵𝑂𝐵 ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) |
13 | 9, 12 | mtbid 316 | 1 ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3083 ∖ cdif 3820 class class class wbr 4923 {copab 4985 ran crn 5402 ‘cfv 6182 (class class class)co 6970 Basecbs 16333 distcds 16424 TarskiGcstrkg 25912 Itvcitv 25918 LineGclng 25919 hpGchpg 26239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-map 8202 df-pm 8203 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-dju 9118 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-xnn0 11774 df-z 11788 df-uz 12053 df-fz 12703 df-fzo 12844 df-hash 13500 df-word 13667 df-concat 13728 df-s1 13753 df-s2 14066 df-s3 14067 df-trkgc 25930 df-trkgb 25931 df-trkgcb 25932 df-trkgld 25934 df-trkg 25935 df-cgrg 25993 df-leg 26065 df-hlg 26083 df-mir 26135 df-rag 26176 df-perpg 26178 df-hpg 26240 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |