MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoppnhpg Structured version   Visualization version   GIF version

Theorem lnoppnhpg 27994
Description: If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
lnoppnhpg.1 (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
lnoppnhpg (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵)
Distinct variable groups:   𝑡,𝐴   𝐵,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)

Proof of Theorem lnoppnhpg
StepHypRef Expression
1 ishpg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2733 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishpg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.l . . 3 𝐿 = (LineG‘𝐺)
6 ishpg.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
7 ishpg.g . . 3 (𝜑𝐺 ∈ TarskiG)
8 hpgbr.b . . 3 (𝜑𝐵𝑃)
91, 2, 3, 4, 5, 6, 7, 8oppnid 27976 . 2 (𝜑 → ¬ 𝐵𝑂𝐵)
10 hpgbr.a . . 3 (𝜑𝐴𝑃)
11 lnoppnhpg.1 . . 3 (𝜑𝐴𝑂𝐵)
121, 3, 5, 4, 7, 6, 10, 8, 8, 11lnopp2hpgb 27993 . 2 (𝜑 → (𝐵𝑂𝐵𝐴((hpG‘𝐺)‘𝐷)𝐵))
139, 12mtbid 324 1 (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  cdif 3943   class class class wbr 5146  {copab 5208  ran crn 5675  cfv 6539  (class class class)co 7403  Basecbs 17139  distcds 17201  TarskiGcstrkg 27657  Itvcitv 27663  LineGclng 27664  hpGchpg 27987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-oadd 8464  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-xnn0 12540  df-z 12554  df-uz 12818  df-fz 13480  df-fzo 13623  df-hash 14286  df-word 14460  df-concat 14516  df-s1 14541  df-s2 14794  df-s3 14795  df-trkgc 27678  df-trkgb 27679  df-trkgcb 27680  df-trkgld 27682  df-trkg 27683  df-cgrg 27741  df-leg 27813  df-hlg 27831  df-mir 27883  df-rag 27924  df-perpg 27926  df-hpg 27988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator