![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreuopnn | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. Ordered pair variant of 2sqreunn 27435. (Contributed by AV, 2-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopnn | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreunn 27435 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
3 | fveq2 6896 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = (1st ‘〈𝑎, 𝑏〉)) | |
4 | fveq2 6896 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = (2nd ‘〈𝑎, 𝑏〉)) | |
5 | 3, 4 | breq12d 5162 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) ≤ (2nd ‘𝑝) ↔ (1st ‘〈𝑎, 𝑏〉) ≤ (2nd ‘〈𝑎, 𝑏〉))) |
6 | vex 3465 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3465 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 8002 | . . . . . 6 ⊢ (1st ‘〈𝑎, 𝑏〉) = 𝑎 |
9 | 6, 7 | op2nd 8003 | . . . . . 6 ⊢ (2nd ‘〈𝑎, 𝑏〉) = 𝑏 |
10 | 8, 9 | breq12i 5158 | . . . . 5 ⊢ ((1st ‘〈𝑎, 𝑏〉) ≤ (2nd ‘〈𝑎, 𝑏〉) ↔ 𝑎 ≤ 𝑏) |
11 | 5, 10 | bitrdi 286 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) ≤ (2nd ‘𝑝) ↔ 𝑎 ≤ 𝑏)) |
12 | 6, 7 | op1std 8004 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7434 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 8005 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7434 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7437 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2727 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 630 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6300 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | sylibr 233 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ∃!wreu 3361 〈cop 4636 class class class wbr 5149 × cxp 5676 ‘cfv 6549 (class class class)co 7419 1st c1st 7992 2nd c2nd 7993 1c1 11141 + caddc 11143 ≤ cle 11281 ℕcn 12245 2c2 12300 4c4 12302 mod cmo 13870 ↑cexp 14062 ℙcprime 16645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-xnn0 12578 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-dvds 16235 df-gcd 16473 df-prm 16646 df-phi 16738 df-pc 16809 df-gz 16902 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-imas 17493 df-qus 17494 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-nsg 19087 df-eqg 19088 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-rhm 20423 df-nzr 20464 df-subrng 20495 df-subrg 20520 df-drng 20638 df-field 20639 df-lmod 20757 df-lss 20828 df-lsp 20868 df-sra 21070 df-rgmod 21071 df-lidl 21116 df-rsp 21117 df-2idl 21157 df-rlreg 21247 df-domn 21248 df-idom 21249 df-cnfld 21297 df-zring 21390 df-zrh 21446 df-zn 21449 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-evl 22041 df-psr1 22122 df-vr1 22123 df-ply1 22124 df-coe1 22125 df-evl1 22260 df-mdeg 26032 df-deg1 26033 df-mon1 26111 df-uc1p 26112 df-q1p 26113 df-r1p 26114 df-lgs 27273 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |