![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreuopltb | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). Ordered pair variant of 2sqreultb 27366. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopltb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreultb 27366 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = (1st ‘⟨𝑎, 𝑏⟩)) | |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = (2nd ‘⟨𝑎, 𝑏⟩)) | |
5 | 3, 4 | breq12d 5155 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩))) |
6 | vex 3473 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3473 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7993 | . . . . . 6 ⊢ (1st ‘⟨𝑎, 𝑏⟩) = 𝑎 |
9 | 6, 7 | op2nd 7994 | . . . . . 6 ⊢ (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏 |
10 | 8, 9 | breq12i 5151 | . . . . 5 ⊢ ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 287 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7995 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7429 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7996 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7429 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7432 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2729 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 630 | . . 3 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6292 | . 2 ⊢ (∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | bitr4di 289 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ∃!wreu 3369 ⟨cop 4630 class class class wbr 5142 × cxp 5670 ‘cfv 6542 (class class class)co 7414 1st c1st 7983 2nd c2nd 7984 1c1 11125 + caddc 11127 < clt 11264 2c2 12283 4c4 12285 ℕ0cn0 12488 mod cmo 13852 ↑cexp 14044 ℙcprime 16627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 ax-mulf 11204 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-ofr 7678 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8716 df-ec 8718 df-qs 8722 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-sup 9451 df-inf 9452 df-oi 9519 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-xnn0 12561 df-z 12575 df-dec 12694 df-uz 12839 df-q 12949 df-rp 12993 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-dvds 16217 df-gcd 16455 df-prm 16628 df-phi 16720 df-pc 16791 df-gz 16884 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-hom 17242 df-cco 17243 df-0g 17408 df-gsum 17409 df-prds 17414 df-pws 17416 df-imas 17475 df-qus 17476 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mhm 18725 df-submnd 18726 df-grp 18878 df-minusg 18879 df-sbg 18880 df-mulg 19008 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-cntz 19252 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-srg 20111 df-ring 20159 df-cring 20160 df-oppr 20255 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-rhm 20393 df-nzr 20434 df-subrng 20465 df-subrg 20490 df-drng 20608 df-field 20609 df-lmod 20727 df-lss 20798 df-lsp 20838 df-sra 21040 df-rgmod 21041 df-lidl 21086 df-rsp 21087 df-2idl 21126 df-rlreg 21212 df-domn 21213 df-idom 21214 df-cnfld 21260 df-zring 21353 df-zrh 21409 df-zn 21412 df-assa 21767 df-asp 21768 df-ascl 21769 df-psr 21822 df-mvr 21823 df-mpl 21824 df-opsr 21826 df-evls 21996 df-evl 21997 df-psr1 22073 df-vr1 22074 df-ply1 22075 df-coe1 22076 df-evl1 22209 df-mdeg 25962 df-deg1 25963 df-mon1 26040 df-uc1p 26041 df-q1p 26042 df-r1p 26043 df-lgs 27202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |