MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuopltb Structured version   Visualization version   GIF version

Theorem 2sqreuopltb 26957
Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). Ordered pair variant of 2sqreultb 26951. (Contributed by AV, 3-Jul-2023.)
Assertion
Ref Expression
2sqreuopltb (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑝

Proof of Theorem 2sqreuopltb
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 260 . . 3 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
212sqreultb 26951 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))))
3 fveq2 6888 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
4 fveq2 6888 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
53, 4breq12d 5160 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩)))
6 vex 3478 . . . . . . 7 𝑎 ∈ V
7 vex 3478 . . . . . . 7 𝑏 ∈ V
86, 7op1st 7979 . . . . . 6 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
96, 7op2nd 7980 . . . . . 6 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
108, 9breq12i 5156 . . . . 5 ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏)
115, 10bitrdi 286 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ 𝑎 < 𝑏))
126, 7op1std 7981 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = 𝑎)
1312oveq1d 7420 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝)↑2) = (𝑎↑2))
146, 7op2ndd 7982 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = 𝑏)
1514oveq1d 7420 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd𝑝)↑2) = (𝑏↑2))
1613, 15oveq12d 7423 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2)))
1716eqeq1d 2734 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
1811, 17anbi12d 631 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1918opreu2reurex 6290 . 2 (∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
202, 19bitr4di 288 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  ∃!wreu 3374  cop 4633   class class class wbr 5147   × cxp 5673  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  1c1 11107   + caddc 11109   < clt 11244  2c2 12263  4c4 12265  0cn0 12468   mod cmo 13830  cexp 14023  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-phi 16695  df-pc 16766  df-gz 16859  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-imas 17450  df-qus 17451  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-nzr 20284  df-drng 20309  df-field 20310  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-2idl 20849  df-rlreg 20891  df-domn 20892  df-idom 20893  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-zn 21047  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-evls 21626  df-evl 21627  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-evl1 21826  df-mdeg 25561  df-deg1 25562  df-mon1 25639  df-uc1p 25640  df-q1p 25641  df-r1p 25642  df-lgs 26787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator