Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqreuopltb | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). Ordered pair variant of 2sqreultb 26714. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopltb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreultb 26714 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
3 | fveq2 6826 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = (1st ‘〈𝑎, 𝑏〉)) | |
4 | fveq2 6826 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = (2nd ‘〈𝑎, 𝑏〉)) | |
5 | 3, 4 | breq12d 5106 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉))) |
6 | vex 3445 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3445 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7908 | . . . . . 6 ⊢ (1st ‘〈𝑎, 𝑏〉) = 𝑎 |
9 | 6, 7 | op2nd 7909 | . . . . . 6 ⊢ (2nd ‘〈𝑎, 𝑏〉) = 𝑏 |
10 | 8, 9 | breq12i 5102 | . . . . 5 ⊢ ((1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 286 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7910 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7353 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7911 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7353 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7356 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2738 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 631 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6233 | . 2 ⊢ (∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | bitr4di 288 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 ∃!wreu 3347 〈cop 4580 class class class wbr 5093 × cxp 5619 ‘cfv 6480 (class class class)co 7338 1st c1st 7898 2nd c2nd 7899 1c1 10974 + caddc 10976 < clt 11111 2c2 12130 4c4 12132 ℕ0cn0 12335 mod cmo 13691 ↑cexp 13884 ℙcprime 16474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 ax-addf 11052 ax-mulf 11053 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-ofr 7597 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-tpos 8113 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-oadd 8372 df-er 8570 df-ec 8572 df-qs 8576 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-sup 9300 df-inf 9301 df-oi 9368 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-xnn0 12408 df-z 12422 df-dec 12540 df-uz 12685 df-q 12791 df-rp 12833 df-fz 13342 df-fzo 13485 df-fl 13614 df-mod 13692 df-seq 13824 df-exp 13885 df-hash 14147 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-dvds 16064 df-gcd 16302 df-prm 16475 df-phi 16565 df-pc 16636 df-gz 16729 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-imas 17317 df-qus 17318 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-nsg 18850 df-eqg 18851 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-srg 19838 df-ring 19881 df-cring 19882 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-dvr 20021 df-rnghom 20055 df-drng 20096 df-field 20097 df-subrg 20128 df-lmod 20232 df-lss 20301 df-lsp 20341 df-sra 20541 df-rgmod 20542 df-lidl 20543 df-rsp 20544 df-2idl 20610 df-nzr 20636 df-rlreg 20661 df-domn 20662 df-idom 20663 df-cnfld 20705 df-zring 20778 df-zrh 20812 df-zn 20815 df-assa 21167 df-asp 21168 df-ascl 21169 df-psr 21219 df-mvr 21220 df-mpl 21221 df-opsr 21223 df-evls 21389 df-evl 21390 df-psr1 21458 df-vr1 21459 df-ply1 21460 df-coe1 21461 df-evl1 21589 df-mdeg 25324 df-deg1 25325 df-mon1 25402 df-uc1p 25403 df-q1p 25404 df-r1p 25405 df-lgs 26550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |