![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreuopnnltb | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Ordered pair variant of 2sqreunnltb 26893. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopnnltb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreunnltb 26893 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
3 | fveq2 6879 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = (1st ‘〈𝑎, 𝑏〉)) | |
4 | fveq2 6879 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = (2nd ‘〈𝑎, 𝑏〉)) | |
5 | 3, 4 | breq12d 5155 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉))) |
6 | vex 3478 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3478 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7967 | . . . . . 6 ⊢ (1st ‘〈𝑎, 𝑏〉) = 𝑎 |
9 | 6, 7 | op2nd 7968 | . . . . . 6 ⊢ (2nd ‘〈𝑎, 𝑏〉) = 𝑏 |
10 | 8, 9 | breq12i 5151 | . . . . 5 ⊢ ((1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 286 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7969 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7409 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7970 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7409 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7412 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2734 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 631 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6283 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | bitr4di 288 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∃!wreu 3374 〈cop 4629 class class class wbr 5142 × cxp 5668 ‘cfv 6533 (class class class)co 7394 1st c1st 7957 2nd c2nd 7958 1c1 11095 + caddc 11097 < clt 11232 ℕcn 12196 2c2 12251 4c4 12253 mod cmo 13818 ↑cexp 14011 ℙcprime 16592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 ax-addf 11173 ax-mulf 11174 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7654 df-ofr 7655 df-om 7840 df-1st 7959 df-2nd 7960 df-supp 8131 df-tpos 8195 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-2o 8451 df-oadd 8454 df-er 8688 df-ec 8690 df-qs 8694 df-map 8807 df-pm 8808 df-ixp 8877 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-fsupp 9347 df-sup 9421 df-inf 9422 df-oi 9489 df-dju 9880 df-card 9918 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-xnn0 12529 df-z 12543 df-dec 12662 df-uz 12807 df-q 12917 df-rp 12959 df-fz 13469 df-fzo 13612 df-fl 13741 df-mod 13819 df-seq 13951 df-exp 14012 df-hash 14275 df-cj 15030 df-re 15031 df-im 15032 df-sqrt 15166 df-abs 15167 df-dvds 16182 df-gcd 16420 df-prm 16593 df-phi 16683 df-pc 16754 df-gz 16847 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17129 df-ress 17158 df-plusg 17194 df-mulr 17195 df-starv 17196 df-sca 17197 df-vsca 17198 df-ip 17199 df-tset 17200 df-ple 17201 df-ds 17203 df-unif 17204 df-hom 17205 df-cco 17206 df-0g 17371 df-gsum 17372 df-prds 17377 df-pws 17379 df-imas 17438 df-qus 17439 df-mre 17514 df-mrc 17515 df-acs 17517 df-mgm 18545 df-sgrp 18594 df-mnd 18605 df-mhm 18649 df-submnd 18650 df-grp 18799 df-minusg 18800 df-sbg 18801 df-mulg 18925 df-subg 18977 df-nsg 18978 df-eqg 18979 df-ghm 19058 df-cntz 19149 df-cmn 19616 df-abl 19617 df-mgp 19949 df-ur 19966 df-srg 19970 df-ring 20018 df-cring 20019 df-oppr 20104 df-dvdsr 20125 df-unit 20126 df-invr 20156 df-dvr 20167 df-rnghom 20203 df-nzr 20244 df-drng 20269 df-field 20270 df-subrg 20312 df-lmod 20424 df-lss 20494 df-lsp 20534 df-sra 20736 df-rgmod 20737 df-lidl 20738 df-rsp 20739 df-2idl 20805 df-rlreg 20837 df-domn 20838 df-idom 20839 df-cnfld 20881 df-zring 20954 df-zrh 20988 df-zn 20991 df-assa 21343 df-asp 21344 df-ascl 21345 df-psr 21395 df-mvr 21396 df-mpl 21397 df-opsr 21399 df-evls 21566 df-evl 21567 df-psr1 21635 df-vr1 21636 df-ply1 21637 df-coe1 21638 df-evl1 21766 df-mdeg 25501 df-deg1 25502 df-mon1 25579 df-uc1p 25580 df-q1p 25581 df-r1p 25582 df-lgs 26727 |
This theorem is referenced by: 2sqreuopb 26900 |
Copyright terms: Public domain | W3C validator |