![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreuopnnltb | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Ordered pair variant of 2sqreunnltb 27381. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopnnltb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreunnltb 27381 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = (1st ‘⟨𝑎, 𝑏⟩)) | |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = (2nd ‘⟨𝑎, 𝑏⟩)) | |
5 | 3, 4 | breq12d 5155 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩))) |
6 | vex 3473 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3473 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7995 | . . . . . 6 ⊢ (1st ‘⟨𝑎, 𝑏⟩) = 𝑎 |
9 | 6, 7 | op2nd 7996 | . . . . . 6 ⊢ (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏 |
10 | 8, 9 | breq12i 5151 | . . . . 5 ⊢ ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 287 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7997 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7429 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7998 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7429 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7432 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2729 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 630 | . . 3 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6292 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | bitr4di 289 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ∃!wreu 3369 ⟨cop 4630 class class class wbr 5142 × cxp 5670 ‘cfv 6542 (class class class)co 7414 1st c1st 7985 2nd c2nd 7986 1c1 11131 + caddc 11133 < clt 11270 ℕcn 12234 2c2 12289 4c4 12291 mod cmo 13858 ↑cexp 14050 ℙcprime 16633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-ec 8720 df-qs 8724 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-inf 9458 df-oi 9525 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-xnn0 12567 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-gcd 16461 df-prm 16634 df-phi 16726 df-pc 16797 df-gz 16890 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-0g 17414 df-gsum 17415 df-prds 17420 df-pws 17422 df-imas 17481 df-qus 17482 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-submnd 18732 df-grp 18884 df-minusg 18885 df-sbg 18886 df-mulg 19015 df-subg 19069 df-nsg 19070 df-eqg 19071 df-ghm 19159 df-cntz 19259 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-srg 20118 df-ring 20166 df-cring 20167 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-nzr 20441 df-subrng 20472 df-subrg 20497 df-drng 20615 df-field 20616 df-lmod 20734 df-lss 20805 df-lsp 20845 df-sra 21047 df-rgmod 21048 df-lidl 21093 df-rsp 21094 df-2idl 21133 df-rlreg 21219 df-domn 21220 df-idom 21221 df-cnfld 21267 df-zring 21360 df-zrh 21416 df-zn 21419 df-assa 21774 df-asp 21775 df-ascl 21776 df-psr 21829 df-mvr 21830 df-mpl 21831 df-opsr 21833 df-evls 22005 df-evl 22006 df-psr1 22086 df-vr1 22087 df-ply1 22088 df-coe1 22089 df-evl1 22222 df-mdeg 25975 df-deg1 25976 df-mon1 26053 df-uc1p 26054 df-q1p 26055 df-r1p 26056 df-lgs 27215 |
This theorem is referenced by: 2sqreuopb 27388 |
Copyright terms: Public domain | W3C validator |