Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuop Structured version   Visualization version   GIF version

Theorem 2sqreuop 26032
 Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. Ordered pair variant of 2sqreu 26026. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
2sqreuop ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) ≤ (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑝

Proof of Theorem 2sqreuop
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 263 . . 3 ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
212sqreu 26026 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 fveq2 6665 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
4 fveq2 6665 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
53, 4breq12d 5072 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) ≤ (2nd𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) ≤ (2nd ‘⟨𝑎, 𝑏⟩)))
6 vex 3498 . . . . . . 7 𝑎 ∈ V
7 vex 3498 . . . . . . 7 𝑏 ∈ V
86, 7op1st 7691 . . . . . 6 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
96, 7op2nd 7692 . . . . . 6 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
108, 9breq12i 5068 . . . . 5 ((1st ‘⟨𝑎, 𝑏⟩) ≤ (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎𝑏)
115, 10syl6bb 289 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) ≤ (2nd𝑝) ↔ 𝑎𝑏))
126, 7op1std 7693 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = 𝑎)
1312oveq1d 7165 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝)↑2) = (𝑎↑2))
146, 7op2ndd 7694 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = 𝑏)
1514oveq1d 7165 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd𝑝)↑2) = (𝑏↑2))
1613, 15oveq12d 7168 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2)))
1716eqeq1d 2823 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
1811, 17anbi12d 632 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝) ≤ (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1918opreu2reurex 6140 . 2 (∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) ≤ (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ0𝑎 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
202, 19sylibr 236 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st𝑝) ≤ (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∃wrex 3139  ∃!wreu 3140  ⟨cop 4567   class class class wbr 5059   × cxp 5548  ‘cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  1c1 10532   + caddc 10534   ≤ cle 10670  2c2 11686  4c4 11688  ℕ0cn0 11891   mod cmo 13231  ↑cexp 13423  ℙcprime 16009 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-prm 16010  df-phi 16097  df-pc 16168  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-imas 16775  df-qus 16776  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-nsg 18271  df-eqg 18272  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-sra 19938  df-rgmod 19939  df-lidl 19940  df-rsp 19941  df-2idl 19999  df-nzr 20025  df-rlreg 20050  df-domn 20051  df-idom 20052  df-assa 20079  df-asp 20080  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132  df-opsr 20134  df-evls 20280  df-evl 20281  df-psr1 20342  df-vr1 20343  df-ply1 20344  df-coe1 20345  df-evl1 20473  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-zn 20648  df-mdeg 24643  df-deg1 24644  df-mon1 24718  df-uc1p 24719  df-q1p 24720  df-r1p 24721  df-lgs 25865 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator