![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreuopnnlt | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 27406. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopnnlt | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreunnlt 27406 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
3 | fveq2 6890 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = (1st ‘⟨𝑎, 𝑏⟩)) | |
4 | fveq2 6890 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = (2nd ‘⟨𝑎, 𝑏⟩)) | |
5 | 3, 4 | breq12d 5157 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩))) |
6 | vex 3467 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3467 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7995 | . . . . . 6 ⊢ (1st ‘⟨𝑎, 𝑏⟩) = 𝑎 |
9 | 6, 7 | op2nd 7996 | . . . . . 6 ⊢ (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏 |
10 | 8, 9 | breq12i 5153 | . . . . 5 ⊢ ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 286 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7997 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7428 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7998 | . . . . . . 7 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7428 | . . . . . 6 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7431 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2727 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 630 | . . 3 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6294 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | sylibr 233 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ∃!wreu 3362 ⟨cop 4631 class class class wbr 5144 × cxp 5671 ‘cfv 6543 (class class class)co 7413 1st c1st 7985 2nd c2nd 7986 1c1 11134 + caddc 11136 < clt 11273 ℕcn 12237 2c2 12292 4c4 12294 mod cmo 13861 ↑cexp 14053 ℙcprime 16636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-xnn0 12570 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-dvds 16226 df-gcd 16464 df-prm 16637 df-phi 16729 df-pc 16800 df-gz 16893 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-imas 17484 df-qus 17485 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-nsg 19078 df-eqg 19079 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-srg 20126 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-rhm 20410 df-nzr 20451 df-subrng 20482 df-subrg 20507 df-drng 20625 df-field 20626 df-lmod 20744 df-lss 20815 df-lsp 20855 df-sra 21057 df-rgmod 21058 df-lidl 21103 df-rsp 21104 df-2idl 21143 df-rlreg 21229 df-domn 21230 df-idom 21231 df-cnfld 21279 df-zring 21372 df-zrh 21428 df-zn 21431 df-assa 21786 df-asp 21787 df-ascl 21788 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-evls 22020 df-evl 22021 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evl1 22239 df-mdeg 26001 df-deg1 26002 df-mon1 26079 df-uc1p 26080 df-q1p 26081 df-r1p 26082 df-lgs 27241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |