MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuopnnlt Structured version   Visualization version   GIF version

Theorem 2sqreuopnnlt 26025
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 26019. (Contributed by AV, 3-Jul-2023.)
Assertion
Ref Expression
2sqreuopnnlt ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑝

Proof of Theorem 2sqreuopnnlt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 263 . . 3 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
212sqreunnlt 26019 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 fveq2 6642 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
4 fveq2 6642 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
53, 4breq12d 5051 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩)))
6 vex 3473 . . . . . . 7 𝑎 ∈ V
7 vex 3473 . . . . . . 7 𝑏 ∈ V
86, 7op1st 7671 . . . . . 6 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
96, 7op2nd 7672 . . . . . 6 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
108, 9breq12i 5047 . . . . 5 ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏)
115, 10syl6bb 289 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ 𝑎 < 𝑏))
126, 7op1std 7673 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = 𝑎)
1312oveq1d 7144 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝)↑2) = (𝑎↑2))
146, 7op2ndd 7674 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = 𝑏)
1514oveq1d 7144 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd𝑝)↑2) = (𝑏↑2))
1613, 15oveq12d 7147 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2)))
1716eqeq1d 2822 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
1811, 17anbi12d 632 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1918opreu2reurex 6117 . 2 (∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
202, 19sylibr 236 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3126  ∃!wreu 3127  cop 4545   class class class wbr 5038   × cxp 5525  cfv 6327  (class class class)co 7129  1st c1st 7661  2nd c2nd 7662  1c1 10512   + caddc 10514   < clt 10649  cn 11612  2c2 11667  4c4 11669   mod cmo 13217  cexp 13410  cprime 15989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589  ax-addf 10590  ax-mulf 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-iin 4894  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-of 7383  df-ofr 7384  df-om 7555  df-1st 7663  df-2nd 7664  df-supp 7805  df-tpos 7866  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-2o 8077  df-oadd 8080  df-er 8263  df-ec 8265  df-qs 8269  df-map 8382  df-pm 8383  df-ixp 8436  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-fsupp 8808  df-sup 8880  df-inf 8881  df-oi 8948  df-dju 9304  df-card 9342  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-5 11678  df-6 11679  df-7 11680  df-8 11681  df-9 11682  df-n0 11873  df-xnn0 11943  df-z 11957  df-dec 12074  df-uz 12219  df-q 12324  df-rp 12365  df-fz 12873  df-fzo 13014  df-fl 13142  df-mod 13218  df-seq 13350  df-exp 13411  df-hash 13672  df-cj 14434  df-re 14435  df-im 14436  df-sqrt 14570  df-abs 14571  df-dvds 15584  df-gcd 15818  df-prm 15990  df-phi 16077  df-pc 16148  df-gz 16240  df-struct 16460  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-ress 16466  df-plusg 16553  df-mulr 16554  df-starv 16555  df-sca 16556  df-vsca 16557  df-ip 16558  df-tset 16559  df-ple 16560  df-ds 16562  df-unif 16563  df-hom 16564  df-cco 16565  df-0g 16690  df-gsum 16691  df-prds 16696  df-pws 16698  df-imas 16756  df-qus 16757  df-mre 16832  df-mrc 16833  df-acs 16835  df-mgm 17827  df-sgrp 17876  df-mnd 17887  df-mhm 17931  df-submnd 17932  df-grp 18081  df-minusg 18082  df-sbg 18083  df-mulg 18200  df-subg 18251  df-nsg 18252  df-eqg 18253  df-ghm 18331  df-cntz 18422  df-cmn 18883  df-abl 18884  df-mgp 19215  df-ur 19227  df-srg 19231  df-ring 19274  df-cring 19275  df-oppr 19348  df-dvdsr 19366  df-unit 19367  df-invr 19397  df-dvr 19408  df-rnghom 19442  df-drng 19476  df-field 19477  df-subrg 19505  df-lmod 19608  df-lss 19676  df-lsp 19716  df-sra 19916  df-rgmod 19917  df-lidl 19918  df-rsp 19919  df-2idl 19977  df-nzr 20003  df-rlreg 20028  df-domn 20029  df-idom 20030  df-assa 20057  df-asp 20058  df-ascl 20059  df-psr 20108  df-mvr 20109  df-mpl 20110  df-opsr 20112  df-evls 20258  df-evl 20259  df-psr1 20320  df-vr1 20321  df-ply1 20322  df-coe1 20323  df-evl1 20451  df-cnfld 20518  df-zring 20590  df-zrh 20623  df-zn 20626  df-mdeg 24631  df-deg1 24632  df-mon1 24706  df-uc1p 24707  df-q1p 24708  df-r1p 24709  df-lgs 25854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator