MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuopnnlt Structured version   Visualization version   GIF version

Theorem 2sqreuopnnlt 27412
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 27406. (Contributed by AV, 3-Jul-2023.)
Assertion
Ref Expression
2sqreuopnnlt ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑝

Proof of Theorem 2sqreuopnnlt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 260 . . 3 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
212sqreunnlt 27406 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 fveq2 6890 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
4 fveq2 6890 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
53, 4breq12d 5157 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ (1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩)))
6 vex 3467 . . . . . . 7 𝑎 ∈ V
7 vex 3467 . . . . . . 7 𝑏 ∈ V
86, 7op1st 7995 . . . . . 6 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
96, 7op2nd 7996 . . . . . 6 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
108, 9breq12i 5153 . . . . 5 ((1st ‘⟨𝑎, 𝑏⟩) < (2nd ‘⟨𝑎, 𝑏⟩) ↔ 𝑎 < 𝑏)
115, 10bitrdi 286 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝) < (2nd𝑝) ↔ 𝑎 < 𝑏))
126, 7op1std 7997 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = 𝑎)
1312oveq1d 7428 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((1st𝑝)↑2) = (𝑎↑2))
146, 7op2ndd 7998 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = 𝑏)
1514oveq1d 7428 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → ((2nd𝑝)↑2) = (𝑏↑2))
1613, 15oveq12d 7431 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2)))
1716eqeq1d 2727 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → ((((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
1811, 17anbi12d 630 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1918opreu2reurex 6294 . 2 (∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
202, 19sylibr 233 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3060  ∃!wreu 3362  cop 4631   class class class wbr 5144   × cxp 5671  cfv 6543  (class class class)co 7413  1st c1st 7985  2nd c2nd 7986  1c1 11134   + caddc 11136   < clt 11273  cn 12237  2c2 12292  4c4 12294   mod cmo 13861  cexp 14053  cprime 16636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-ec 8720  df-qs 8724  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-xnn0 12570  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-fz 13512  df-fzo 13655  df-fl 13784  df-mod 13862  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-dvds 16226  df-gcd 16464  df-prm 16637  df-phi 16729  df-pc 16800  df-gz 16893  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-imas 17484  df-qus 17485  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-nsg 19078  df-eqg 19079  df-ghm 19167  df-cntz 19267  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-srg 20126  df-ring 20174  df-cring 20175  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-dvr 20339  df-rhm 20410  df-nzr 20451  df-subrng 20482  df-subrg 20507  df-drng 20625  df-field 20626  df-lmod 20744  df-lss 20815  df-lsp 20855  df-sra 21057  df-rgmod 21058  df-lidl 21103  df-rsp 21104  df-2idl 21143  df-rlreg 21229  df-domn 21230  df-idom 21231  df-cnfld 21279  df-zring 21372  df-zrh 21428  df-zn 21431  df-assa 21786  df-asp 21787  df-ascl 21788  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22020  df-evl 22021  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-evl1 22239  df-mdeg 26001  df-deg1 26002  df-mon1 26079  df-uc1p 26080  df-q1p 26081  df-r1p 26082  df-lgs 27241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator