Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqreuopnnlt | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 26714. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopnnlt | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | 2sqreunnlt 26714 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
3 | fveq2 6825 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = (1st ‘〈𝑎, 𝑏〉)) | |
4 | fveq2 6825 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = (2nd ‘〈𝑎, 𝑏〉)) | |
5 | 3, 4 | breq12d 5105 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ (1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉))) |
6 | vex 3445 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
7 | vex 3445 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
8 | 6, 7 | op1st 7907 | . . . . . 6 ⊢ (1st ‘〈𝑎, 𝑏〉) = 𝑎 |
9 | 6, 7 | op2nd 7908 | . . . . . 6 ⊢ (2nd ‘〈𝑎, 𝑏〉) = 𝑏 |
10 | 8, 9 | breq12i 5101 | . . . . 5 ⊢ ((1st ‘〈𝑎, 𝑏〉) < (2nd ‘〈𝑎, 𝑏〉) ↔ 𝑎 < 𝑏) |
11 | 5, 10 | bitrdi 286 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝) < (2nd ‘𝑝) ↔ 𝑎 < 𝑏)) |
12 | 6, 7 | op1std 7909 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (1st ‘𝑝) = 𝑎) |
13 | 12 | oveq1d 7352 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((1st ‘𝑝)↑2) = (𝑎↑2)) |
14 | 6, 7 | op2ndd 7910 | . . . . . . 7 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (2nd ‘𝑝) = 𝑏) |
15 | 14 | oveq1d 7352 | . . . . . 6 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑝)↑2) = (𝑏↑2)) |
16 | 13, 15 | oveq12d 7355 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = ((𝑎↑2) + (𝑏↑2))) |
17 | 16 | eqeq1d 2738 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
18 | 11, 17 | anbi12d 631 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
19 | 18 | opreu2reurex 6232 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
20 | 2, 19 | sylibr 233 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 ∃!wreu 3347 〈cop 4579 class class class wbr 5092 × cxp 5618 ‘cfv 6479 (class class class)co 7337 1st c1st 7897 2nd c2nd 7898 1c1 10973 + caddc 10975 < clt 11110 ℕcn 12074 2c2 12129 4c4 12131 mod cmo 13690 ↑cexp 13883 ℙcprime 16473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-ofr 7596 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-ec 8571 df-qs 8575 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-sup 9299 df-inf 9300 df-oi 9367 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-xnn0 12407 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-fz 13341 df-fzo 13484 df-fl 13613 df-mod 13691 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-gcd 16301 df-prm 16474 df-phi 16564 df-pc 16635 df-gz 16728 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-0g 17249 df-gsum 17250 df-prds 17255 df-pws 17257 df-imas 17316 df-qus 17317 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mulg 18797 df-subg 18848 df-nsg 18849 df-eqg 18850 df-ghm 18928 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-srg 19837 df-ring 19880 df-cring 19881 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-rnghom 20054 df-drng 20095 df-field 20096 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-sra 20540 df-rgmod 20541 df-lidl 20542 df-rsp 20543 df-2idl 20609 df-nzr 20635 df-rlreg 20660 df-domn 20661 df-idom 20662 df-cnfld 20704 df-zring 20777 df-zrh 20811 df-zn 20814 df-assa 21166 df-asp 21167 df-ascl 21168 df-psr 21218 df-mvr 21219 df-mpl 21220 df-opsr 21222 df-evls 21388 df-evl 21389 df-psr1 21457 df-vr1 21458 df-ply1 21459 df-coe1 21460 df-evl1 21588 df-mdeg 25323 df-deg1 25324 df-mon1 25401 df-uc1p 25402 df-q1p 25403 df-r1p 25404 df-lgs 26549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |