![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > php4 | Structured version Visualization version GIF version |
Description: Corollary of the Pigeonhole Principle php 9269: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
Ref | Expression |
---|---|
php4 | ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6475 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) | |
2 | nnord 7907 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
3 | ordsuc 7845 | . . . . 5 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
4 | 3 | biimpi 216 | . . . 4 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
5 | ordelpss 6422 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) | |
6 | 2, 4, 5 | syl2anc2 584 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) |
7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴) |
8 | peano2b 7916 | . . 3 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
9 | php2 9270 | . . 3 ⊢ ((suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴) | |
10 | 8, 9 | sylanb 580 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴) |
11 | 7, 10 | mpdan 686 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2103 ⊊ wpss 3971 class class class wbr 5169 Ord word 6393 suc csuc 6396 ωcom 7899 ≺ csdm 8998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-om 7900 df-1o 8518 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 |
This theorem is referenced by: php5 9273 sucdom 9294 sucdomOLD 9295 1sdom2ALT 9300 domalom 37318 |
Copyright terms: Public domain | W3C validator |