MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php4 Structured version   Visualization version   GIF version

Theorem php4 9119
Description: Corollary of the Pigeonhole Principle php 9116: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php4 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)

Proof of Theorem php4
StepHypRef Expression
1 sucidg 6389 . . 3 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2 nnord 7804 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ordsuc 7744 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
43biimpi 216 . . . 4 (Ord 𝐴 → Ord suc 𝐴)
5 ordelpss 6334 . . . 4 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
62, 4, 5syl2anc2 585 . . 3 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
71, 6mpbid 232 . 2 (𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴)
8 peano2b 7813 . . 3 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
9 php2 9117 . . 3 ((suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
108, 9sylanb 581 . 2 ((𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
117, 10mpdan 687 1 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wpss 3898   class class class wbr 5089  Ord word 6305  suc csuc 6308  ωcom 7796  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  php5  9120  sucdom  9128  1sdom2ALT  9133  domalom  37448
  Copyright terms: Public domain W3C validator