MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php4 Structured version   Visualization version   GIF version

Theorem php4 8960
Description: Corollary of the Pigeonhole Principle php 8957: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php4 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)

Proof of Theorem php4
StepHypRef Expression
1 sucidg 6341 . . 3 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2 nnord 7708 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ordsuc 7649 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
43biimpi 215 . . . 4 (Ord 𝐴 → Ord suc 𝐴)
5 ordelpss 6291 . . . 4 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
62, 4, 5syl2anc2 584 . . 3 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
71, 6mpbid 231 . 2 (𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴)
8 peano2b 7717 . . 3 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
9 php2 8958 . . 3 ((suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
108, 9sylanb 580 . 2 ((𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
117, 10mpdan 683 1 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2109  wpss 3892   class class class wbr 5078  Ord word 6262  suc csuc 6265  ωcom 7700  csdm 8706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711
This theorem is referenced by:  php5  8961  sucdom  8981  1sdom2  8983  domalom  35554
  Copyright terms: Public domain W3C validator