Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   GIF version

Theorem zlidlring 48222
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
zlidlring ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)

Proof of Theorem zlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
2 zlidlring.0 . . . . . 6 0 = (0g𝑅)
31, 2lidl0 21155 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ 𝐿)
43adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈ 𝐿)
5 eleq1 2816 . . . . 5 (𝑈 = { 0 } → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
65adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
74, 6mpbird 257 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈𝐿)
8 lidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
91, 8lidlrng 48221 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
107, 9syldan 591 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng)
11 eleq1 2816 . . . . . 6 ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿𝑈𝐿))
1211eqcoms 2737 . . . . 5 (𝑈 = { 0 } → ({ 0 } ∈ 𝐿𝑈𝐿))
1312adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿𝑈𝐿))
14 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
1514, 2ring0cl 20170 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
16 eqid 2729 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
1714, 16, 2ringlz 20196 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r𝑅) 0 ) = 0 )
1817, 17jca 511 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
1915, 18mpdan 687 . . . . . . . . . 10 (𝑅 ∈ Ring → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
202fvexi 6840 . . . . . . . . . . 11 0 ∈ V
21 oveq2 7361 . . . . . . . . . . . . . 14 (𝑦 = 0 → ( 0 (.r𝑅)𝑦) = ( 0 (.r𝑅) 0 ))
22 id 22 . . . . . . . . . . . . . 14 (𝑦 = 0𝑦 = 0 )
2321, 22eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 0 → (( 0 (.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
24 oveq1 7360 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑦(.r𝑅) 0 ) = ( 0 (.r𝑅) 0 ))
2524, 22eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 0 → ((𝑦(.r𝑅) 0 ) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
2623, 25anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 0 → ((( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2726ralsng 4629 . . . . . . . . . . 11 ( 0 ∈ V → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2820, 27mp1i 13 . . . . . . . . . 10 (𝑅 ∈ Ring → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2919, 28mpbird 257 . . . . . . . . 9 (𝑅 ∈ Ring → ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦))
30 oveq1 7360 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥(.r𝑅)𝑦) = ( 0 (.r𝑅)𝑦))
3130eqeq1d 2731 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅)𝑦) = 𝑦))
3231ovanraleqv 7377 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3332rexsng 4630 . . . . . . . . . 10 ( 0 ∈ V → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3420, 33mp1i 13 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3529, 34mpbird 257 . . . . . . . 8 (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3635adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3736adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
381, 8lidlbas 21139 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
39 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 })
4038, 39sylan9eqr 2786 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (Base‘𝐼) = { 0 })
418, 16ressmulr 17229 . . . . . . . . . . . . 13 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
4241eqcomd 2735 . . . . . . . . . . . 12 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
4342adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
4443oveqd 7370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
4544eqeq1d 2731 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
4643oveqd 7370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
4746eqeq1d 2731 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
4845, 47anbi12d 632 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
4940, 48raleqbidv 3310 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5040, 49rexeqbidv 3311 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5137, 50mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
5251ex 412 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5313, 52sylbid 240 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
544, 53mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
55 eqid 2729 . . 3 (Base‘𝐼) = (Base‘𝐼)
56 eqid 2729 . . 3 (.r𝐼) = (.r𝐼)
5755, 56isringrng 20190 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5810, 54, 57sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  .rcmulr 17180  0gc0g 17361  Rngcrng 20055  Ringcrg 20136  LIdealclidl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133
This theorem is referenced by:  uzlidlring  48223
  Copyright terms: Public domain W3C validator