Step | Hyp | Ref
| Expression |
1 | | lidlabl.l |
. . . . . 6
⊢ 𝐿 = (LIdeal‘𝑅) |
2 | | zlidlring.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
3 | 1, 2 | lidl0 20403 |
. . . . 5
⊢ (𝑅 ∈ Ring → { 0 } ∈
𝐿) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈
𝐿) |
5 | | eleq1 2826 |
. . . . 5
⊢ (𝑈 = { 0 } → (𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿)) |
6 | 5 | adantl 481 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿)) |
7 | 4, 6 | mpbird 256 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 ∈ 𝐿) |
8 | | lidlabl.i |
. . . 4
⊢ 𝐼 = (𝑅 ↾s 𝑈) |
9 | 1, 8 | lidlrng 45373 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) |
10 | 7, 9 | syldan 590 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng) |
11 | | eleq1 2826 |
. . . . . 6
⊢ ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿 ↔ 𝑈 ∈ 𝐿)) |
12 | 11 | eqcoms 2746 |
. . . . 5
⊢ (𝑈 = { 0 } → ({ 0 } ∈
𝐿 ↔ 𝑈 ∈ 𝐿)) |
13 | 12 | adantl 481 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈
𝐿 ↔ 𝑈 ∈ 𝐿)) |
14 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
15 | 14, 2 | ring0cl 19723 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
16 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
17 | 14, 16, 2 | ringlz 19741 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 0 ∈
(Base‘𝑅)) → (
0
(.r‘𝑅)
0 ) =
0
) |
18 | 17, 17 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 0 ∈
(Base‘𝑅)) → ((
0
(.r‘𝑅)
0 ) =
0 ∧ (
0
(.r‘𝑅)
0 ) =
0
)) |
19 | 15, 18 | mpdan 683 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (( 0
(.r‘𝑅)
0 ) =
0 ∧ (
0
(.r‘𝑅)
0 ) =
0
)) |
20 | 2 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
21 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → ( 0
(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) |
22 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → 𝑦 = 0 ) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (( 0
(.r‘𝑅)𝑦) = 𝑦 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
24 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (𝑦(.r‘𝑅) 0 ) = ( 0 (.r‘𝑅) 0 )) |
25 | 24, 22 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → ((𝑦(.r‘𝑅) 0 ) = 𝑦 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
26 | 23, 25 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → ((( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) |
27 | 26 | ralsng 4606 |
. . . . . . . . . . 11
⊢ ( 0 ∈ V
→ (∀𝑦 ∈ {
0 } ((
0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) |
28 | 20, 27 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(∀𝑦 ∈ { 0 } (( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) |
29 | 19, 28 | mpbird 256 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
∀𝑦 ∈ { 0 } (( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦)) |
30 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) |
31 | 30 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 𝑦 ↔ ( 0 (.r‘𝑅)𝑦) = 𝑦)) |
32 | 31 | ovanraleqv 7279 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) |
33 | 32 | rexsng 4607 |
. . . . . . . . . 10
⊢ ( 0 ∈ V
→ (∃𝑥 ∈ {
0
}∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) |
34 | 20, 33 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(∃𝑥 ∈ { 0
}∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) |
35 | 29, 34 | mpbird 256 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
36 | 35 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
38 | 1, 8 | lidlbas 45369 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
39 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 }) |
40 | 38, 39 | sylan9eqr 2801 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) = { 0 }) |
41 | 8, 16 | ressmulr 16943 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
42 | 41 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
43 | 42 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) |
44 | 43 | oveqd 7272 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (𝑥(.r‘𝐼)𝑦) = (𝑥(.r‘𝑅)𝑦)) |
45 | 44 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ((𝑥(.r‘𝐼)𝑦) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦)) |
46 | 43 | oveqd 7272 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (𝑦(.r‘𝐼)𝑥) = (𝑦(.r‘𝑅)𝑥)) |
47 | 46 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ((𝑦(.r‘𝐼)𝑥) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
48 | 45, 47 | anbi12d 630 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
49 | 40, 48 | raleqbidv 3327 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
50 | 40, 49 | rexeqbidv 3328 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
51 | 37, 50 | mpbird 256 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
52 | 51 | ex 412 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈 ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
53 | 13, 52 | sylbid 239 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈
𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
54 | 4, 53 | mpd 15 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
55 | | eqid 2738 |
. . 3
⊢
(Base‘𝐼) =
(Base‘𝐼) |
56 | | eqid 2738 |
. . 3
⊢
(.r‘𝐼) = (.r‘𝐼) |
57 | 55, 56 | isringrng 45327 |
. 2
⊢ (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
58 | 10, 54, 57 | sylanbrc 582 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) |