Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   GIF version

Theorem zlidlring 48396
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
zlidlring ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)

Proof of Theorem zlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
2 zlidlring.0 . . . . . 6 0 = (0g𝑅)
31, 2lidl0 21176 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ 𝐿)
43adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈ 𝐿)
5 eleq1 2821 . . . . 5 (𝑈 = { 0 } → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
65adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
74, 6mpbird 257 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈𝐿)
8 lidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
91, 8lidlrng 48395 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
107, 9syldan 591 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng)
11 eleq1 2821 . . . . . 6 ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿𝑈𝐿))
1211eqcoms 2741 . . . . 5 (𝑈 = { 0 } → ({ 0 } ∈ 𝐿𝑈𝐿))
1312adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿𝑈𝐿))
14 eqid 2733 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
1514, 2ring0cl 20193 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
16 eqid 2733 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
1714, 16, 2ringlz 20219 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r𝑅) 0 ) = 0 )
1817, 17jca 511 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
1915, 18mpdan 687 . . . . . . . . . 10 (𝑅 ∈ Ring → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
202fvexi 6845 . . . . . . . . . . 11 0 ∈ V
21 oveq2 7363 . . . . . . . . . . . . . 14 (𝑦 = 0 → ( 0 (.r𝑅)𝑦) = ( 0 (.r𝑅) 0 ))
22 id 22 . . . . . . . . . . . . . 14 (𝑦 = 0𝑦 = 0 )
2321, 22eqeq12d 2749 . . . . . . . . . . . . 13 (𝑦 = 0 → (( 0 (.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
24 oveq1 7362 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑦(.r𝑅) 0 ) = ( 0 (.r𝑅) 0 ))
2524, 22eqeq12d 2749 . . . . . . . . . . . . 13 (𝑦 = 0 → ((𝑦(.r𝑅) 0 ) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
2623, 25anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 0 → ((( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2726ralsng 4629 . . . . . . . . . . 11 ( 0 ∈ V → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2820, 27mp1i 13 . . . . . . . . . 10 (𝑅 ∈ Ring → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2919, 28mpbird 257 . . . . . . . . 9 (𝑅 ∈ Ring → ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦))
30 oveq1 7362 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥(.r𝑅)𝑦) = ( 0 (.r𝑅)𝑦))
3130eqeq1d 2735 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅)𝑦) = 𝑦))
3231ovanraleqv 7379 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3332rexsng 4630 . . . . . . . . . 10 ( 0 ∈ V → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3420, 33mp1i 13 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3529, 34mpbird 257 . . . . . . . 8 (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3635adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3736adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
381, 8lidlbas 21160 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
39 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 })
4038, 39sylan9eqr 2790 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (Base‘𝐼) = { 0 })
418, 16ressmulr 17218 . . . . . . . . . . . . 13 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
4241eqcomd 2739 . . . . . . . . . . . 12 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
4342adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
4443oveqd 7372 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
4544eqeq1d 2735 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
4643oveqd 7372 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
4746eqeq1d 2735 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
4845, 47anbi12d 632 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
4940, 48raleqbidv 3313 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5040, 49rexeqbidv 3314 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5137, 50mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
5251ex 412 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5313, 52sylbid 240 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
544, 53mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
55 eqid 2733 . . 3 (Base‘𝐼) = (Base‘𝐼)
56 eqid 2733 . . 3 (.r𝐼) = (.r𝐼)
5755, 56isringrng 20213 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5810, 54, 57sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  {csn 4577  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  .rcmulr 17169  0gc0g 17350  Rngcrng 20078  Ringcrg 20159  LIdealclidl 21152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-subrg 20494  df-lmod 20804  df-lss 20874  df-sra 21116  df-rgmod 21117  df-lidl 21154
This theorem is referenced by:  uzlidlring  48397
  Copyright terms: Public domain W3C validator