Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   GIF version

Theorem zlidlring 44127
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
zlidlring ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)

Proof of Theorem zlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
2 zlidlring.0 . . . . . 6 0 = (0g𝑅)
31, 2lidl0 19920 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ 𝐿)
43adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈ 𝐿)
5 eleq1 2897 . . . . 5 (𝑈 = { 0 } → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
65adantl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
74, 6mpbird 258 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈𝐿)
8 lidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
91, 8lidlrng 44126 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
107, 9syldan 591 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng)
11 eleq1 2897 . . . . . 6 ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿𝑈𝐿))
1211eqcoms 2826 . . . . 5 (𝑈 = { 0 } → ({ 0 } ∈ 𝐿𝑈𝐿))
1312adantl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿𝑈𝐿))
14 eqid 2818 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
1514, 2ring0cl 19248 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
16 eqid 2818 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
1714, 16, 2ringlz 19266 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r𝑅) 0 ) = 0 )
1817, 17jca 512 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
1915, 18mpdan 683 . . . . . . . . . 10 (𝑅 ∈ Ring → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
202fvexi 6677 . . . . . . . . . . 11 0 ∈ V
21 oveq2 7153 . . . . . . . . . . . . . 14 (𝑦 = 0 → ( 0 (.r𝑅)𝑦) = ( 0 (.r𝑅) 0 ))
22 id 22 . . . . . . . . . . . . . 14 (𝑦 = 0𝑦 = 0 )
2321, 22eqeq12d 2834 . . . . . . . . . . . . 13 (𝑦 = 0 → (( 0 (.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
24 oveq1 7152 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑦(.r𝑅) 0 ) = ( 0 (.r𝑅) 0 ))
2524, 22eqeq12d 2834 . . . . . . . . . . . . 13 (𝑦 = 0 → ((𝑦(.r𝑅) 0 ) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
2623, 25anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 0 → ((( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2726ralsng 4605 . . . . . . . . . . 11 ( 0 ∈ V → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2820, 27mp1i 13 . . . . . . . . . 10 (𝑅 ∈ Ring → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2919, 28mpbird 258 . . . . . . . . 9 (𝑅 ∈ Ring → ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦))
30 oveq1 7152 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥(.r𝑅)𝑦) = ( 0 (.r𝑅)𝑦))
3130eqeq1d 2820 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅)𝑦) = 𝑦))
3231ovanraleqv 7169 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3332rexsng 4606 . . . . . . . . . 10 ( 0 ∈ V → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3420, 33mp1i 13 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3529, 34mpbird 258 . . . . . . . 8 (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3635adantr 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3736adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
381, 8lidlbas 44122 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
39 simpr 485 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 })
4038, 39sylan9eqr 2875 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (Base‘𝐼) = { 0 })
418, 16ressmulr 16613 . . . . . . . . . . . . 13 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
4241eqcomd 2824 . . . . . . . . . . . 12 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
4342adantl 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
4443oveqd 7162 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
4544eqeq1d 2820 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
4643oveqd 7162 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
4746eqeq1d 2820 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
4845, 47anbi12d 630 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
4940, 48raleqbidv 3399 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5040, 49rexeqbidv 3400 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5137, 50mpbird 258 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
5251ex 413 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5313, 52sylbid 241 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
544, 53mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
55 eqid 2818 . . 3 (Base‘𝐼) = (Base‘𝐼)
56 eqid 2818 . . 3 (.r𝐼) = (.r𝐼)
5755, 56isringrng 44080 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5810, 54, 57sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  {csn 4557  cfv 6348  (class class class)co 7145  Basecbs 16471  s cress 16472  .rcmulr 16554  0gc0g 16701  Ringcrg 19226  LIdealclidl 19871  Rngcrng 44073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-subrg 19462  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rng0 44074
This theorem is referenced by:  uzlidlring  44128
  Copyright terms: Public domain W3C validator