Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   GIF version

Theorem zlidlring 45113
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
zlidlring ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)

Proof of Theorem zlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
2 zlidlring.0 . . . . . 6 0 = (0g𝑅)
31, 2lidl0 20229 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ 𝐿)
43adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈ 𝐿)
5 eleq1 2821 . . . . 5 (𝑈 = { 0 } → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
65adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
74, 6mpbird 260 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈𝐿)
8 lidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
91, 8lidlrng 45112 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
107, 9syldan 594 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng)
11 eleq1 2821 . . . . . 6 ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿𝑈𝐿))
1211eqcoms 2742 . . . . 5 (𝑈 = { 0 } → ({ 0 } ∈ 𝐿𝑈𝐿))
1312adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿𝑈𝐿))
14 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
1514, 2ring0cl 19559 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
16 eqid 2734 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
1714, 16, 2ringlz 19577 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r𝑅) 0 ) = 0 )
1817, 17jca 515 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
1915, 18mpdan 687 . . . . . . . . . 10 (𝑅 ∈ Ring → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
202fvexi 6720 . . . . . . . . . . 11 0 ∈ V
21 oveq2 7210 . . . . . . . . . . . . . 14 (𝑦 = 0 → ( 0 (.r𝑅)𝑦) = ( 0 (.r𝑅) 0 ))
22 id 22 . . . . . . . . . . . . . 14 (𝑦 = 0𝑦 = 0 )
2321, 22eqeq12d 2750 . . . . . . . . . . . . 13 (𝑦 = 0 → (( 0 (.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
24 oveq1 7209 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑦(.r𝑅) 0 ) = ( 0 (.r𝑅) 0 ))
2524, 22eqeq12d 2750 . . . . . . . . . . . . 13 (𝑦 = 0 → ((𝑦(.r𝑅) 0 ) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
2623, 25anbi12d 634 . . . . . . . . . . . 12 (𝑦 = 0 → ((( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2726ralsng 4579 . . . . . . . . . . 11 ( 0 ∈ V → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2820, 27mp1i 13 . . . . . . . . . 10 (𝑅 ∈ Ring → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2919, 28mpbird 260 . . . . . . . . 9 (𝑅 ∈ Ring → ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦))
30 oveq1 7209 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥(.r𝑅)𝑦) = ( 0 (.r𝑅)𝑦))
3130eqeq1d 2736 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅)𝑦) = 𝑦))
3231ovanraleqv 7226 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3332rexsng 4580 . . . . . . . . . 10 ( 0 ∈ V → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3420, 33mp1i 13 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3529, 34mpbird 260 . . . . . . . 8 (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3635adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3736adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
381, 8lidlbas 45108 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
39 simpr 488 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 })
4038, 39sylan9eqr 2796 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (Base‘𝐼) = { 0 })
418, 16ressmulr 16827 . . . . . . . . . . . . 13 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
4241eqcomd 2740 . . . . . . . . . . . 12 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
4342adantl 485 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
4443oveqd 7219 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
4544eqeq1d 2736 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
4643oveqd 7219 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
4746eqeq1d 2736 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
4845, 47anbi12d 634 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
4940, 48raleqbidv 3306 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5040, 49rexeqbidv 3307 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5137, 50mpbird 260 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
5251ex 416 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5313, 52sylbid 243 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
544, 53mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
55 eqid 2734 . . 3 (Base‘𝐼) = (Base‘𝐼)
56 eqid 2734 . . 3 (.r𝐼) = (.r𝐼)
5755, 56isringrng 45066 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5810, 54, 57sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  wrex 3055  Vcvv 3401  {csn 4531  cfv 6369  (class class class)co 7202  Basecbs 16684  s cress 16685  .rcmulr 16768  0gc0g 16916  Ringcrg 19534  LIdealclidl 20179  Rngcrng 45059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-subrg 19770  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-lidl 20183  df-rng0 45060
This theorem is referenced by:  uzlidlring  45114
  Copyright terms: Public domain W3C validator