Step | Hyp | Ref
| Expression |
1 | | lidlabl.l |
. . . . . 6
β’ πΏ = (LIdealβπ
) |
2 | | zlidlring.0 |
. . . . . 6
β’ 0 =
(0gβπ
) |
3 | 1, 2 | lidl0 20734 |
. . . . 5
β’ (π
β Ring β { 0 } β
πΏ) |
4 | 3 | adantr 482 |
. . . 4
β’ ((π
β Ring β§ π = { 0 }) β { 0 } β
πΏ) |
5 | | eleq1 2822 |
. . . . 5
β’ (π = { 0 } β (π β πΏ β { 0 } β πΏ)) |
6 | 5 | adantl 483 |
. . . 4
β’ ((π
β Ring β§ π = { 0 }) β (π β πΏ β { 0 } β πΏ)) |
7 | 4, 6 | mpbird 257 |
. . 3
β’ ((π
β Ring β§ π = { 0 }) β π β πΏ) |
8 | | lidlabl.i |
. . . 4
β’ πΌ = (π
βΎs π) |
9 | 1, 8 | lidlrng 46315 |
. . 3
β’ ((π
β Ring β§ π β πΏ) β πΌ β Rng) |
10 | 7, 9 | syldan 592 |
. 2
β’ ((π
β Ring β§ π = { 0 }) β πΌ β Rng) |
11 | | eleq1 2822 |
. . . . . 6
β’ ({ 0 } = π β ({ 0 } β πΏ β π β πΏ)) |
12 | 11 | eqcoms 2741 |
. . . . 5
β’ (π = { 0 } β ({ 0 } β
πΏ β π β πΏ)) |
13 | 12 | adantl 483 |
. . . 4
β’ ((π
β Ring β§ π = { 0 }) β ({ 0 } β
πΏ β π β πΏ)) |
14 | | eqid 2733 |
. . . . . . . . . . . 12
β’
(Baseβπ
) =
(Baseβπ
) |
15 | 14, 2 | ring0cl 19998 |
. . . . . . . . . . 11
β’ (π
β Ring β 0 β
(Baseβπ
)) |
16 | | eqid 2733 |
. . . . . . . . . . . . 13
β’
(.rβπ
) = (.rβπ
) |
17 | 14, 16, 2 | ringlz 20019 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§ 0 β
(Baseβπ
)) β (
0
(.rβπ
)
0 ) =
0
) |
18 | 17, 17 | jca 513 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ 0 β
(Baseβπ
)) β ((
0
(.rβπ
)
0 ) =
0 β§ (
0
(.rβπ
)
0 ) =
0
)) |
19 | 15, 18 | mpdan 686 |
. . . . . . . . . 10
β’ (π
β Ring β (( 0
(.rβπ
)
0 ) =
0 β§ (
0
(.rβπ
)
0 ) =
0
)) |
20 | 2 | fvexi 6860 |
. . . . . . . . . . 11
β’ 0 β
V |
21 | | oveq2 7369 |
. . . . . . . . . . . . . 14
β’ (π¦ = 0 β ( 0
(.rβπ
)π¦) = ( 0 (.rβπ
) 0 )) |
22 | | id 22 |
. . . . . . . . . . . . . 14
β’ (π¦ = 0 β π¦ = 0 ) |
23 | 21, 22 | eqeq12d 2749 |
. . . . . . . . . . . . 13
β’ (π¦ = 0 β (( 0
(.rβπ
)π¦) = π¦ β ( 0 (.rβπ
) 0 ) = 0 )) |
24 | | oveq1 7368 |
. . . . . . . . . . . . . 14
β’ (π¦ = 0 β (π¦(.rβπ
) 0 ) = ( 0 (.rβπ
) 0 )) |
25 | 24, 22 | eqeq12d 2749 |
. . . . . . . . . . . . 13
β’ (π¦ = 0 β ((π¦(.rβπ
) 0 ) = π¦ β ( 0 (.rβπ
) 0 ) = 0 )) |
26 | 23, 25 | anbi12d 632 |
. . . . . . . . . . . 12
β’ (π¦ = 0 β ((( 0
(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦) β (( 0 (.rβπ
) 0 ) = 0 β§ ( 0 (.rβπ
) 0 ) = 0 ))) |
27 | 26 | ralsng 4638 |
. . . . . . . . . . 11
β’ ( 0 β V
β (βπ¦ β {
0 } ((
0
(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦) β (( 0 (.rβπ
) 0 ) = 0 β§ ( 0 (.rβπ
) 0 ) = 0 ))) |
28 | 20, 27 | mp1i 13 |
. . . . . . . . . 10
β’ (π
β Ring β
(βπ¦ β { 0 } (( 0
(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦) β (( 0 (.rβπ
) 0 ) = 0 β§ ( 0 (.rβπ
) 0 ) = 0 ))) |
29 | 19, 28 | mpbird 257 |
. . . . . . . . 9
β’ (π
β Ring β
βπ¦ β { 0 } (( 0
(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦)) |
30 | | oveq1 7368 |
. . . . . . . . . . . . 13
β’ (π₯ = 0 β (π₯(.rβπ
)π¦) = ( 0 (.rβπ
)π¦)) |
31 | 30 | eqeq1d 2735 |
. . . . . . . . . . . 12
β’ (π₯ = 0 β ((π₯(.rβπ
)π¦) = π¦ β ( 0 (.rβπ
)π¦) = π¦)) |
32 | 31 | ovanraleqv 7385 |
. . . . . . . . . . 11
β’ (π₯ = 0 β (βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β βπ¦ β { 0 } (( 0 (.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦))) |
33 | 32 | rexsng 4639 |
. . . . . . . . . 10
β’ ( 0 β V
β (βπ₯ β {
0
}βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β βπ¦ β { 0 } (( 0 (.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦))) |
34 | 20, 33 | mp1i 13 |
. . . . . . . . 9
β’ (π
β Ring β
(βπ₯ β { 0
}βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β βπ¦ β { 0 } (( 0 (.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
) 0 ) = π¦))) |
35 | 29, 34 | mpbird 257 |
. . . . . . . 8
β’ (π
β Ring β βπ₯ β { 0 }βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
36 | 35 | adantr 482 |
. . . . . . 7
β’ ((π
β Ring β§ π = { 0 }) β βπ₯ β { 0 }βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
37 | 36 | adantr 482 |
. . . . . 6
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β βπ₯ β { 0 }βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
38 | 1, 8 | lidlbas 46311 |
. . . . . . . 8
β’ (π β πΏ β (BaseβπΌ) = π) |
39 | | simpr 486 |
. . . . . . . 8
β’ ((π
β Ring β§ π = { 0 }) β π = { 0 }) |
40 | 38, 39 | sylan9eqr 2795 |
. . . . . . 7
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (BaseβπΌ) = { 0 }) |
41 | 8, 16 | ressmulr 17196 |
. . . . . . . . . . . . 13
β’ (π β πΏ β (.rβπ
) = (.rβπΌ)) |
42 | 41 | eqcomd 2739 |
. . . . . . . . . . . 12
β’ (π β πΏ β (.rβπΌ) = (.rβπ
)) |
43 | 42 | adantl 483 |
. . . . . . . . . . 11
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (.rβπΌ) = (.rβπ
)) |
44 | 43 | oveqd 7378 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (π₯(.rβπΌ)π¦) = (π₯(.rβπ
)π¦)) |
45 | 44 | eqeq1d 2735 |
. . . . . . . . 9
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β ((π₯(.rβπΌ)π¦) = π¦ β (π₯(.rβπ
)π¦) = π¦)) |
46 | 43 | oveqd 7378 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (π¦(.rβπΌ)π₯) = (π¦(.rβπ
)π₯)) |
47 | 46 | eqeq1d 2735 |
. . . . . . . . 9
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β ((π¦(.rβπΌ)π₯) = π¦ β (π¦(.rβπ
)π₯) = π¦)) |
48 | 45, 47 | anbi12d 632 |
. . . . . . . 8
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
49 | 40, 48 | raleqbidv 3318 |
. . . . . . 7
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
50 | 40, 49 | rexeqbidv 3319 |
. . . . . 6
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β βπ₯ β { 0 }βπ¦ β { 0 } ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
51 | 37, 50 | mpbird 257 |
. . . . 5
β’ (((π
β Ring β§ π = { 0 }) β§ π β πΏ) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) |
52 | 51 | ex 414 |
. . . 4
β’ ((π
β Ring β§ π = { 0 }) β (π β πΏ β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
53 | 13, 52 | sylbid 239 |
. . 3
β’ ((π
β Ring β§ π = { 0 }) β ({ 0 } β
πΏ β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
54 | 4, 53 | mpd 15 |
. 2
β’ ((π
β Ring β§ π = { 0 }) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) |
55 | | eqid 2733 |
. . 3
β’
(BaseβπΌ) =
(BaseβπΌ) |
56 | | eqid 2733 |
. . 3
β’
(.rβπΌ) = (.rβπΌ) |
57 | 55, 56 | isringrng 46269 |
. 2
β’ (πΌ β Ring β (πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
58 | 10, 54, 57 | sylanbrc 584 |
1
β’ ((π
β Ring β§ π = { 0 }) β πΌ β Ring) |