| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lidlabl.l | . . . . . 6
⊢ 𝐿 = (LIdeal‘𝑅) | 
| 2 |  | zlidlring.0 | . . . . . 6
⊢  0 =
(0g‘𝑅) | 
| 3 | 1, 2 | lidl0 21241 | . . . . 5
⊢ (𝑅 ∈ Ring → { 0 } ∈
𝐿) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈
𝐿) | 
| 5 |  | eleq1 2828 | . . . . 5
⊢ (𝑈 = { 0 } → (𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿)) | 
| 6 | 5 | adantl 481 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿)) | 
| 7 | 4, 6 | mpbird 257 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 ∈ 𝐿) | 
| 8 |  | lidlabl.i | . . . 4
⊢ 𝐼 = (𝑅 ↾s 𝑈) | 
| 9 | 1, 8 | lidlrng 48154 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) | 
| 10 | 7, 9 | syldan 591 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng) | 
| 11 |  | eleq1 2828 | . . . . . 6
⊢ ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿 ↔ 𝑈 ∈ 𝐿)) | 
| 12 | 11 | eqcoms 2744 | . . . . 5
⊢ (𝑈 = { 0 } → ({ 0 } ∈
𝐿 ↔ 𝑈 ∈ 𝐿)) | 
| 13 | 12 | adantl 481 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈
𝐿 ↔ 𝑈 ∈ 𝐿)) | 
| 14 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 15 | 14, 2 | ring0cl 20265 | . . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) | 
| 16 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 17 | 14, 16, 2 | ringlz 20291 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 0 ∈
(Base‘𝑅)) → (
0
(.r‘𝑅)
0 ) =
0
) | 
| 18 | 17, 17 | jca 511 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 0 ∈
(Base‘𝑅)) → ((
0
(.r‘𝑅)
0 ) =
0 ∧ (
0
(.r‘𝑅)
0 ) =
0
)) | 
| 19 | 15, 18 | mpdan 687 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (( 0
(.r‘𝑅)
0 ) =
0 ∧ (
0
(.r‘𝑅)
0 ) =
0
)) | 
| 20 | 2 | fvexi 6919 | . . . . . . . . . . 11
⊢  0 ∈
V | 
| 21 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → ( 0
(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) | 
| 22 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → 𝑦 = 0 ) | 
| 23 | 21, 22 | eqeq12d 2752 | . . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (( 0
(.r‘𝑅)𝑦) = 𝑦 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) | 
| 24 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (𝑦(.r‘𝑅) 0 ) = ( 0 (.r‘𝑅) 0 )) | 
| 25 | 24, 22 | eqeq12d 2752 | . . . . . . . . . . . . 13
⊢ (𝑦 = 0 → ((𝑦(.r‘𝑅) 0 ) = 𝑦 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) | 
| 26 | 23, 25 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑦 = 0 → ((( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) | 
| 27 | 26 | ralsng 4674 | . . . . . . . . . . 11
⊢ ( 0 ∈ V
→ (∀𝑦 ∈ {
0 } ((
0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) | 
| 28 | 20, 27 | mp1i 13 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(∀𝑦 ∈ { 0 } (( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦) ↔ (( 0 (.r‘𝑅) 0 ) = 0 ∧ ( 0 (.r‘𝑅) 0 ) = 0 ))) | 
| 29 | 19, 28 | mpbird 257 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring →
∀𝑦 ∈ { 0 } (( 0
(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦)) | 
| 30 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) | 
| 31 | 30 | eqeq1d 2738 | . . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 𝑦 ↔ ( 0 (.r‘𝑅)𝑦) = 𝑦)) | 
| 32 | 31 | ovanraleqv 7456 | . . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) | 
| 33 | 32 | rexsng 4675 | . . . . . . . . . 10
⊢ ( 0 ∈ V
→ (∃𝑥 ∈ {
0
}∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) | 
| 34 | 20, 33 | mp1i 13 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(∃𝑥 ∈ { 0
}∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅) 0 ) = 𝑦))) | 
| 35 | 29, 34 | mpbird 257 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) | 
| 36 | 35 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) | 
| 37 | 36 | adantr 480 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) | 
| 38 | 1, 8 | lidlbas 21225 | . . . . . . . 8
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | 
| 39 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 }) | 
| 40 | 38, 39 | sylan9eqr 2798 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) = { 0 }) | 
| 41 | 8, 16 | ressmulr 17352 | . . . . . . . . . . . . 13
⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) | 
| 42 | 41 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) | 
| 44 | 43 | oveqd 7449 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (𝑥(.r‘𝐼)𝑦) = (𝑥(.r‘𝑅)𝑦)) | 
| 45 | 44 | eqeq1d 2738 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ((𝑥(.r‘𝐼)𝑦) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦)) | 
| 46 | 43 | oveqd 7449 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (𝑦(.r‘𝐼)𝑥) = (𝑦(.r‘𝑅)𝑥)) | 
| 47 | 46 | eqeq1d 2738 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ((𝑦(.r‘𝐼)𝑥) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦)) | 
| 48 | 45, 47 | anbi12d 632 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) | 
| 49 | 40, 48 | raleqbidv 3345 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) | 
| 50 | 40, 49 | rexeqbidv 3346 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) | 
| 51 | 37, 50 | mpbird 257 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) | 
| 52 | 51 | ex 412 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈 ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) | 
| 53 | 13, 52 | sylbid 240 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈
𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) | 
| 54 | 4, 53 | mpd 15 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) | 
| 55 |  | eqid 2736 | . . 3
⊢
(Base‘𝐼) =
(Base‘𝐼) | 
| 56 |  | eqid 2736 | . . 3
⊢
(.r‘𝐼) = (.r‘𝐼) | 
| 57 | 55, 56 | isringrng 20285 | . 2
⊢ (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) | 
| 58 | 10, 54, 57 | sylanbrc 583 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) |