Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   GIF version

Theorem zlidlring 44539
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
zlidlring ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)

Proof of Theorem zlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
2 zlidlring.0 . . . . . 6 0 = (0g𝑅)
31, 2lidl0 19988 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ 𝐿)
43adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → { 0 } ∈ 𝐿)
5 eleq1 2880 . . . . 5 (𝑈 = { 0 } → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
65adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 ↔ { 0 } ∈ 𝐿))
74, 6mpbird 260 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈𝐿)
8 lidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
91, 8lidlrng 44538 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
107, 9syldan 594 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Rng)
11 eleq1 2880 . . . . . 6 ({ 0 } = 𝑈 → ({ 0 } ∈ 𝐿𝑈𝐿))
1211eqcoms 2809 . . . . 5 (𝑈 = { 0 } → ({ 0 } ∈ 𝐿𝑈𝐿))
1312adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿𝑈𝐿))
14 eqid 2801 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
1514, 2ring0cl 19318 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
16 eqid 2801 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
1714, 16, 2ringlz 19336 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r𝑅) 0 ) = 0 )
1817, 17jca 515 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
1915, 18mpdan 686 . . . . . . . . . 10 (𝑅 ∈ Ring → (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 ))
202fvexi 6663 . . . . . . . . . . 11 0 ∈ V
21 oveq2 7147 . . . . . . . . . . . . . 14 (𝑦 = 0 → ( 0 (.r𝑅)𝑦) = ( 0 (.r𝑅) 0 ))
22 id 22 . . . . . . . . . . . . . 14 (𝑦 = 0𝑦 = 0 )
2321, 22eqeq12d 2817 . . . . . . . . . . . . 13 (𝑦 = 0 → (( 0 (.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
24 oveq1 7146 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑦(.r𝑅) 0 ) = ( 0 (.r𝑅) 0 ))
2524, 22eqeq12d 2817 . . . . . . . . . . . . 13 (𝑦 = 0 → ((𝑦(.r𝑅) 0 ) = 𝑦 ↔ ( 0 (.r𝑅) 0 ) = 0 ))
2623, 25anbi12d 633 . . . . . . . . . . . 12 (𝑦 = 0 → ((( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2726ralsng 4576 . . . . . . . . . . 11 ( 0 ∈ V → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2820, 27mp1i 13 . . . . . . . . . 10 (𝑅 ∈ Ring → (∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦) ↔ (( 0 (.r𝑅) 0 ) = 0 ∧ ( 0 (.r𝑅) 0 ) = 0 )))
2919, 28mpbird 260 . . . . . . . . 9 (𝑅 ∈ Ring → ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦))
30 oveq1 7146 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥(.r𝑅)𝑦) = ( 0 (.r𝑅)𝑦))
3130eqeq1d 2803 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ ( 0 (.r𝑅)𝑦) = 𝑦))
3231ovanraleqv 7163 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3332rexsng 4577 . . . . . . . . . 10 ( 0 ∈ V → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3420, 33mp1i 13 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } (( 0 (.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅) 0 ) = 𝑦)))
3529, 34mpbird 260 . . . . . . . 8 (𝑅 ∈ Ring → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3635adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
3736adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
381, 8lidlbas 44534 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
39 simpr 488 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝑈 = { 0 })
4038, 39sylan9eqr 2858 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (Base‘𝐼) = { 0 })
418, 16ressmulr 16620 . . . . . . . . . . . . 13 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
4241eqcomd 2807 . . . . . . . . . . . 12 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
4342adantl 485 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
4443oveqd 7156 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
4544eqeq1d 2803 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
4643oveqd 7156 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
4746eqeq1d 2803 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
4845, 47anbi12d 633 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
4940, 48raleqbidv 3357 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5040, 49rexeqbidv 3358 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ { 0 }∀𝑦 ∈ { 0 } ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
5137, 50mpbird 260 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) ∧ 𝑈𝐿) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
5251ex 416 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → (𝑈𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5313, 52sylbid 243 . . 3 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ({ 0 } ∈ 𝐿 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
544, 53mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
55 eqid 2801 . . 3 (Base‘𝐼) = (Base‘𝐼)
56 eqid 2801 . . 3 (.r𝐼) = (.r𝐼)
5755, 56isringrng 44492 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
5810, 54, 57sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  {csn 4528  cfv 6328  (class class class)co 7139  Basecbs 16478  s cress 16479  .rcmulr 16561  0gc0g 16708  Ringcrg 19293  LIdealclidl 19938  Rngcrng 44485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rng0 44486
This theorem is referenced by:  uzlidlring  44540
  Copyright terms: Public domain W3C validator