Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngod Structured version   Visualization version   GIF version

Theorem isrngod 35057
Description: Conditions that determine a ring. (Changed label from isringd 19264 to isrngod 35057-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1 (𝜑𝐺 ∈ AbelOp)
isringod.2 (𝜑𝑋 = ran 𝐺)
isringod.3 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
isringod.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
isringod.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
isringod.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
isringod.7 (𝜑𝑈𝑋)
isringod.8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
isringod.9 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
Assertion
Ref Expression
isrngod (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑈(𝑧)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3 (𝜑𝐺 ∈ AbelOp)
2 isringod.3 . . . 4 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
3 isringod.2 . . . . . 6 (𝜑𝑋 = ran 𝐺)
43sqxpeqd 5580 . . . . 5 (𝜑 → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
54, 3feq23d 6502 . . . 4 (𝜑 → (𝐻:(𝑋 × 𝑋)⟶𝑋𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺))
62, 5mpbid 233 . . 3 (𝜑𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
7 isringod.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
8 isringod.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
9 isringod.6 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
107, 8, 93jca 1120 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
1110ralrimivvva 3189 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
123raleqdv 3413 . . . . . . 7 (𝜑 → (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
133, 12raleqbidv 3399 . . . . . 6 (𝜑 → (∀𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
143, 13raleqbidv 3399 . . . . 5 (𝜑 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
1511, 14mpbid 233 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
16 isringod.7 . . . . . 6 (𝜑𝑈𝑋)
17 isringod.8 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
18 isringod.9 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
1917, 18jca 512 . . . . . . 7 ((𝜑𝑦𝑋) → ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
2019ralrimiva 3179 . . . . . 6 (𝜑 → ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
21 oveq1 7152 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
2221eqeq1d 2820 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) = 𝑦 ↔ (𝑈𝐻𝑦) = 𝑦))
2322ovanraleqv 7169 . . . . . . 7 (𝑥 = 𝑈 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2423rspcev 3620 . . . . . 6 ((𝑈𝑋 ∧ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2516, 20, 24syl2anc 584 . . . . 5 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
263raleqdv 3413 . . . . . 6 (𝜑 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
273, 26rexeqbidv 3400 . . . . 5 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2825, 27mpbid 233 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2915, 28jca 512 . . 3 (𝜑 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
301, 6, 29jca31 515 . 2 (𝜑 → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
31 rnexg 7603 . . . . . 6 (𝐺 ∈ AbelOp → ran 𝐺 ∈ V)
321, 31syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
3332, 32xpexd 7463 . . . 4 (𝜑 → (ran 𝐺 × ran 𝐺) ∈ V)
34 fex 6980 . . . 4 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ (ran 𝐺 × ran 𝐺) ∈ V) → 𝐻 ∈ V)
356, 33, 34syl2anc 584 . . 3 (𝜑𝐻 ∈ V)
36 eqid 2818 . . . 4 ran 𝐺 = ran 𝐺
3736isrngo 35056 . . 3 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
3835, 37syl 17 . 2 (𝜑 → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
3930, 38mpbird 258 1 (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  cop 4563   × cxp 5546  ran crn 5549  wf 6344  (class class class)co 7145  AbelOpcablo 28248  RingOpscrngo 35053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-rngo 35054
This theorem is referenced by:  iscringd  35157
  Copyright terms: Public domain W3C validator