| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0g | Structured version Visualization version GIF version | ||
| Description: The neutral element of 𝑊. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| Ref | Expression |
|---|---|
| signsw0g | ⊢ 0 = (0g‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11186 | . . . . 5 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4742 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signsw0glem 34552 | . . . 4 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| 5 | 2, 4 | pm3.2i 470 | . . 3 ⊢ (0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
| 6 | signsw.w | . . . . . 6 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 7 | 3, 6 | signswbase 34553 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
| 8 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 9 | 3, 6 | signswplusg 34554 | . . . . 5 ⊢ ⨣ = (+g‘𝑊) |
| 10 | oveq1 7401 | . . . . . . . . . 10 ⊢ (𝑒 = 0 → (𝑒 ⨣ 𝑢) = (0 ⨣ 𝑢)) | |
| 11 | 10 | eqeq1d 2732 | . . . . . . . . 9 ⊢ (𝑒 = 0 → ((𝑒 ⨣ 𝑢) = 𝑢 ↔ (0 ⨣ 𝑢) = 𝑢)) |
| 12 | 11 | ovanraleqv 7418 | . . . . . . . 8 ⊢ (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢))) |
| 13 | 12 | rspcev 3597 | . . . . . . 7 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
| 14 | 2, 4, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (⊤ → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
| 16 | 7, 8, 9, 15 | ismgmid 18598 | . . . 4 ⊢ (⊤ → ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0)) |
| 17 | 16 | mptru 1547 | . . 3 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0) |
| 18 | 5, 17 | mpbi 230 | . 2 ⊢ (0g‘𝑊) = 0 |
| 19 | 18 | eqcomi 2739 | 1 ⊢ 0 = (0g‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 ifcif 4496 {cpr 4599 {ctp 4601 〈cop 4603 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 0cc0 11086 1c1 11087 -cneg 11424 ndxcnx 17169 Basecbs 17185 +gcplusg 17226 0gc0g 17408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |