Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0g | Structured version Visualization version GIF version |
Description: The neutral element of 𝑊. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
Ref | Expression |
---|---|
signsw0g | ⊢ 0 = (0g‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
2 | 1 | tpid2 4706 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
3 | signsw.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
4 | 3 | signsw0glem 32532 | . . . 4 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
5 | 2, 4 | pm3.2i 471 | . . 3 ⊢ (0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
6 | signsw.w | . . . . . 6 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
7 | 3, 6 | signswbase 32533 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
8 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
9 | 3, 6 | signswplusg 32534 | . . . . 5 ⊢ ⨣ = (+g‘𝑊) |
10 | oveq1 7282 | . . . . . . . . . 10 ⊢ (𝑒 = 0 → (𝑒 ⨣ 𝑢) = (0 ⨣ 𝑢)) | |
11 | 10 | eqeq1d 2740 | . . . . . . . . 9 ⊢ (𝑒 = 0 → ((𝑒 ⨣ 𝑢) = 𝑢 ↔ (0 ⨣ 𝑢) = 𝑢)) |
12 | 11 | ovanraleqv 7299 | . . . . . . . 8 ⊢ (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢))) |
13 | 12 | rspcev 3561 | . . . . . . 7 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
14 | 2, 4, 13 | mp2an 689 | . . . . . 6 ⊢ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (⊤ → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
16 | 7, 8, 9, 15 | ismgmid 18349 | . . . 4 ⊢ (⊤ → ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0)) |
17 | 16 | mptru 1546 | . . 3 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0) |
18 | 5, 17 | mpbi 229 | . 2 ⊢ (0g‘𝑊) = 0 |
19 | 18 | eqcomi 2747 | 1 ⊢ 0 = (0g‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ifcif 4459 {cpr 4563 {ctp 4565 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 1c1 10872 -cneg 11206 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 0gc0g 17150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |