![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0g | Structured version Visualization version GIF version |
Description: The neutral element of 𝑊. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
Ref | Expression |
---|---|
signsw0g | ⊢ 0 = (0g‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11259 | . . . . 5 ⊢ 0 ∈ V | |
2 | 1 | tpid2 4776 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
3 | signsw.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
4 | 3 | signsw0glem 34560 | . . . 4 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
5 | 2, 4 | pm3.2i 470 | . . 3 ⊢ (0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
6 | signsw.w | . . . . . 6 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
7 | 3, 6 | signswbase 34561 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
8 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
9 | 3, 6 | signswplusg 34562 | . . . . 5 ⊢ ⨣ = (+g‘𝑊) |
10 | oveq1 7442 | . . . . . . . . . 10 ⊢ (𝑒 = 0 → (𝑒 ⨣ 𝑢) = (0 ⨣ 𝑢)) | |
11 | 10 | eqeq1d 2738 | . . . . . . . . 9 ⊢ (𝑒 = 0 → ((𝑒 ⨣ 𝑢) = 𝑢 ↔ (0 ⨣ 𝑢) = 𝑢)) |
12 | 11 | ovanraleqv 7459 | . . . . . . . 8 ⊢ (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢))) |
13 | 12 | rspcev 3623 | . . . . . . 7 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
14 | 2, 4, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (⊤ → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 𝑒) = 𝑢)) |
16 | 7, 8, 9, 15 | ismgmid 18697 | . . . 4 ⊢ (⊤ → ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0)) |
17 | 16 | mptru 1545 | . . 3 ⊢ ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) ↔ (0g‘𝑊) = 0) |
18 | 5, 17 | mpbi 230 | . 2 ⊢ (0g‘𝑊) = 0 |
19 | 18 | eqcomi 2745 | 1 ⊢ 0 = (0g‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1538 ⊤wtru 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ifcif 4532 {cpr 4634 {ctp 4636 〈cop 4638 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 0cc0 11159 1c1 11160 -cneg 11497 ndxcnx 17233 Basecbs 17251 +gcplusg 17304 0gc0g 17492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-struct 17187 df-slot 17222 df-ndx 17234 df-base 17252 df-plusg 17317 df-0g 17494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |