MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Visualization version   GIF version

Theorem gsumress 18154
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7220 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
21eqeq1d 2739 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
32ovanraleqv 7237 . . . . . . . 8 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
4 gsumress.s . . . . . . . . 9 (𝜑𝑆𝐵)
5 gsumress.z . . . . . . . . 9 (𝜑0𝑆)
64, 5sseldd 3902 . . . . . . . 8 (𝜑0𝐵)
7 gsumress.c . . . . . . . . 9 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
87ralrimiva 3105 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
93, 6, 8elrabd 3604 . . . . . . 7 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
109snssd 4722 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
11 gsumress.g . . . . . . . 8 (𝜑𝐺𝑉)
12 gsumress.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
13 eqid 2737 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
14 gsumress.o . . . . . . . . 9 + = (+g𝐺)
15 eqid 2737 . . . . . . . . 9 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
1612, 13, 14, 15mgmidsssn0 18144 . . . . . . . 8 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
1711, 16syl 17 . . . . . . 7 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
1817, 9sseldd 3902 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐺)})
19 elsni 4558 . . . . . . . . 9 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
2018, 19syl 17 . . . . . . . 8 (𝜑0 = (0g𝐺))
2120sneqd 4553 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐺)})
2217, 21sseqtrrd 3942 . . . . . 6 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ { 0 })
2310, 22eqssd 3918 . . . . 5 (𝜑 → { 0 } = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
242ovanraleqv 7237 . . . . . . . . 9 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
254sselda 3901 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝐵)
2625, 7syldan 594 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
2726ralrimiva 3105 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
2824, 5, 27elrabd 3604 . . . . . . . 8 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
29 gsumress.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
3029, 12ressbas2 16791 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
314, 30syl 17 . . . . . . . . 9 (𝜑𝑆 = (Base‘𝐻))
32 fvex 6730 . . . . . . . . . . . . . . 15 (Base‘𝐻) ∈ V
3331, 32eqeltrdi 2846 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
3429, 14ressplusg 16834 . . . . . . . . . . . . . 14 (𝑆 ∈ V → + = (+g𝐻))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜑+ = (+g𝐻))
3635oveqd 7230 . . . . . . . . . . . 12 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
3736eqeq1d 2739 . . . . . . . . . . 11 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
3835oveqd 7230 . . . . . . . . . . . 12 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3938eqeq1d 2739 . . . . . . . . . . 11 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4037, 39anbi12d 634 . . . . . . . . . 10 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4131, 40raleqbidv 3313 . . . . . . . . 9 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4231, 41rabeqbidv 3396 . . . . . . . 8 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4328, 42eleqtrd 2840 . . . . . . 7 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4443snssd 4722 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4529ovexi 7247 . . . . . . . . 9 𝐻 ∈ V
4645a1i 11 . . . . . . . 8 (𝜑𝐻 ∈ V)
47 eqid 2737 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
48 eqid 2737 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
49 eqid 2737 . . . . . . . . 9 (+g𝐻) = (+g𝐻)
50 eqid 2737 . . . . . . . . 9 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
5147, 48, 49, 50mgmidsssn0 18144 . . . . . . . 8 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5246, 51syl 17 . . . . . . 7 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5352, 43sseldd 3902 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐻)})
54 elsni 4558 . . . . . . . . 9 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
5553, 54syl 17 . . . . . . . 8 (𝜑0 = (0g𝐻))
5655sneqd 4553 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐻)})
5752, 56sseqtrrd 3942 . . . . . 6 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ { 0 })
5844, 57eqssd 3918 . . . . 5 (𝜑 → { 0 } = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5923, 58eqtr3d 2779 . . . 4 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6059sseq2d 3933 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
6120, 55eqtr3d 2779 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
6235seqeq2d 13581 . . . . . . . . . 10 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
6362fveq1d 6719 . . . . . . . . 9 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
6463eqeq2d 2748 . . . . . . . 8 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
6564anbi2d 632 . . . . . . 7 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6665rexbidv 3216 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6766exbidv 1929 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6867iotabidv 6364 . . . 4 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6935seqeq2d 13581 . . . . . . . . 9 (𝜑 → seq1( + , (𝐹𝑓)) = seq1((+g𝐻), (𝐹𝑓)))
7069fveq1d 6719 . . . . . . . 8 (𝜑 → (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
7170eqeq2d 2748 . . . . . . 7 (𝜑 → (𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) ↔ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))
7271anbi2d 632 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))) ↔ (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7372exbidv 1929 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))) ↔ ∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7473iotabidv 6364 . . . 4 (𝜑 → (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))) = (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7568, 74ifeq12d 4460 . . 3 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))) = if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))))
7660, 61, 75ifbieq12d 4467 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
7723difeq2d 4037 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}))
7877imaeq2d 5929 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})))
79 gsumress.a . . 3 (𝜑𝐴𝑋)
80 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
8180, 4fssd 6563 . . 3 (𝜑𝐹:𝐴𝐵)
8212, 13, 14, 15, 78, 11, 79, 81gsumval 18149 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
8358difeq2d 4037 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
8483imaeq2d 5929 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})))
8531feq3d 6532 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8680, 85mpbid 235 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8747, 48, 49, 50, 84, 46, 79, 86gsumval 18149 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
8876, 82, 873eqtr4d 2787 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  cdif 3863  wss 3866  ifcif 4439  {csn 4541  ccnv 5550  ran crn 5552  cima 5554  ccom 5555  cio 6336  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  1c1 10730  cuz 12438  ...cfz 13095  seqcseq 13574  chash 13896  Basecbs 16760  s cress 16784  +gcplusg 16802  0gc0g 16944   Σg cgsu 16945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-seq 13575  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947
This theorem is referenced by:  gsumsubm  18261  regsumfsum  20431  regsumsupp  20584  frlmgsum  20734  imasdsf1olem  23271  gsumsubg  31025  esumpfinvallem  31754  sge0tsms  43593  aacllem  46176
  Copyright terms: Public domain W3C validator