MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Visualization version   GIF version

Theorem gsumress 18660
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
21eqeq1d 2737 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
32ovanraleqv 7429 . . . . . . . 8 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
4 gsumress.s . . . . . . . . 9 (𝜑𝑆𝐵)
5 gsumress.z . . . . . . . . 9 (𝜑0𝑆)
64, 5sseldd 3959 . . . . . . . 8 (𝜑0𝐵)
7 gsumress.c . . . . . . . . 9 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
87ralrimiva 3132 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
93, 6, 8elrabd 3673 . . . . . . 7 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
109snssd 4785 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
11 gsumress.g . . . . . . . 8 (𝜑𝐺𝑉)
12 gsumress.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
13 eqid 2735 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
14 gsumress.o . . . . . . . . 9 + = (+g𝐺)
15 eqid 2735 . . . . . . . . 9 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
1612, 13, 14, 15mgmidsssn0 18650 . . . . . . . 8 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
1711, 16syl 17 . . . . . . 7 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
1817, 9sseldd 3959 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐺)})
19 elsni 4618 . . . . . . . . 9 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
2018, 19syl 17 . . . . . . . 8 (𝜑0 = (0g𝐺))
2120sneqd 4613 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐺)})
2217, 21sseqtrrd 3996 . . . . . 6 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ { 0 })
2310, 22eqssd 3976 . . . . 5 (𝜑 → { 0 } = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
242ovanraleqv 7429 . . . . . . . . 9 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
254sselda 3958 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝐵)
2625, 7syldan 591 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
2726ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
2824, 5, 27elrabd 3673 . . . . . . . 8 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
29 gsumress.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
3029, 12ressbas2 17259 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
314, 30syl 17 . . . . . . . . 9 (𝜑𝑆 = (Base‘𝐻))
32 fvex 6889 . . . . . . . . . . . . . . 15 (Base‘𝐻) ∈ V
3331, 32eqeltrdi 2842 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
3429, 14ressplusg 17305 . . . . . . . . . . . . . 14 (𝑆 ∈ V → + = (+g𝐻))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜑+ = (+g𝐻))
3635oveqd 7422 . . . . . . . . . . . 12 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
3736eqeq1d 2737 . . . . . . . . . . 11 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
3835oveqd 7422 . . . . . . . . . . . 12 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3938eqeq1d 2737 . . . . . . . . . . 11 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4037, 39anbi12d 632 . . . . . . . . . 10 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4131, 40raleqbidv 3325 . . . . . . . . 9 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4231, 41rabeqbidv 3434 . . . . . . . 8 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4328, 42eleqtrd 2836 . . . . . . 7 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4443snssd 4785 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4529ovexi 7439 . . . . . . . . 9 𝐻 ∈ V
4645a1i 11 . . . . . . . 8 (𝜑𝐻 ∈ V)
47 eqid 2735 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
48 eqid 2735 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
49 eqid 2735 . . . . . . . . 9 (+g𝐻) = (+g𝐻)
50 eqid 2735 . . . . . . . . 9 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
5147, 48, 49, 50mgmidsssn0 18650 . . . . . . . 8 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5246, 51syl 17 . . . . . . 7 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5352, 43sseldd 3959 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐻)})
54 elsni 4618 . . . . . . . . 9 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
5553, 54syl 17 . . . . . . . 8 (𝜑0 = (0g𝐻))
5655sneqd 4613 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐻)})
5752, 56sseqtrrd 3996 . . . . . 6 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ { 0 })
5844, 57eqssd 3976 . . . . 5 (𝜑 → { 0 } = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5923, 58eqtr3d 2772 . . . 4 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6059sseq2d 3991 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
6120, 55eqtr3d 2772 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
6235seqeq2d 14026 . . . . . . . . . 10 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
6362fveq1d 6878 . . . . . . . . 9 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
6463eqeq2d 2746 . . . . . . . 8 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
6564anbi2d 630 . . . . . . 7 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6665rexbidv 3164 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6766exbidv 1921 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6867iotabidv 6515 . . . 4 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6935seqeq2d 14026 . . . . . . . . 9 (𝜑 → seq1( + , (𝐹𝑓)) = seq1((+g𝐻), (𝐹𝑓)))
7069fveq1d 6878 . . . . . . . 8 (𝜑 → (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
7170eqeq2d 2746 . . . . . . 7 (𝜑 → (𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) ↔ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))
7271anbi2d 630 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))) ↔ (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7372exbidv 1921 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))) ↔ ∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7473iotabidv 6515 . . . 4 (𝜑 → (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))) = (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))
7568, 74ifeq12d 4522 . . 3 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))) = if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))))
7660, 61, 75ifbieq12d 4529 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
7723difeq2d 4101 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}))
7877imaeq2d 6047 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})))
79 gsumress.a . . 3 (𝜑𝐴𝑋)
80 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
8180, 4fssd 6723 . . 3 (𝜑𝐹:𝐴𝐵)
8212, 13, 14, 15, 78, 11, 79, 81gsumval 18655 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
8358difeq2d 4101 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
8483imaeq2d 6047 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})))
8531feq3d 6693 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8680, 85mpbid 232 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8747, 48, 49, 50, 84, 46, 79, 86gsumval 18655 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))))))
8876, 82, 873eqtr4d 2780 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500  {csn 4601  ccnv 5653  ran crn 5655  cima 5657  ccom 5658  cio 6482  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  1c1 11130  cuz 12852  ...cfz 13524  seqcseq 14019  chash 14348  Basecbs 17228  s cress 17251  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-seq 14020  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456
This theorem is referenced by:  gsumsubm  18813  regsumfsum  21403  regsumsupp  21582  frlmgsum  21732  imasdsf1olem  24312  gsumsubg  33040  gsumzrsum  33053  ressply1evls1  33578  esumpfinvallem  34105  sge0tsms  46409  aacllem  49665
  Copyright terms: Public domain W3C validator