Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Structured version   Visualization version   GIF version

Theorem exidresid 37483
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidresid (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)

Proof of Theorem exidresid
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
2 resexg 6032 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V)
31, 2eqeltrid 2829 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V)
4 eqid 2725 . . . . . 6 ran 𝐻 = ran 𝐻
54gidval 30394 . . . . 5 (𝐻 ∈ V → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
63, 5syl 17 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
763ad2ant1 1130 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
87adantr 479 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
9 exidres.1 . . . . . . 7 𝑋 = ran 𝐺
10 exidres.2 . . . . . . 7 𝑈 = (GId‘𝐺)
119, 10, 1exidreslem 37481 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
1211simprd 494 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
1312adantr 479 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
149, 10, 1exidres 37482 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
15 elin 3960 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) ↔ (𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ))
16 rngopidOLD 37457 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻)
1715, 16sylbir 234 . . . . . . 7 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻)
1817ancoms 457 . . . . . 6 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
1914, 18sylan 578 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
2019raleqdv 3314 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
2113, 20mpbird 256 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
2211simpld 493 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
2322adantr 479 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻)
2423, 19eleqtrrd 2828 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻)
254exidu1 37460 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2615, 25sylbir 234 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2726ancoms 457 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2814, 27sylan 578 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
29 oveq1 7426 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥))
3029eqeq1d 2727 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥))
3130ovanraleqv 7443 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3231riota2 7401 . . . 4 ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3324, 28, 32syl2anc 582 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3421, 33mpbid 231 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)
358, 34eqtrd 2765 1 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  ∃!wreu 3361  Vcvv 3461  cin 3943  wss 3944   × cxp 5676  dom cdm 5678  ran crn 5679  cres 5680  cfv 6549  crio 7374  (class class class)co 7419  GIdcgi 30372   ExId cexid 37448  Magmacmagm 37452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-riota 7375  df-ov 7422  df-gid 30376  df-exid 37449  df-mgmOLD 37453
This theorem is referenced by:  isdrngo2  37562
  Copyright terms: Public domain W3C validator