Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Structured version   Visualization version   GIF version

Theorem exidresid 34304
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidresid (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)

Proof of Theorem exidresid
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
2 resexg 5692 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V)
31, 2syl5eqel 2863 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V)
4 eqid 2778 . . . . . 6 ran 𝐻 = ran 𝐻
54gidval 27939 . . . . 5 (𝐻 ∈ V → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
63, 5syl 17 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
763ad2ant1 1124 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
87adantr 474 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
9 exidres.1 . . . . . . 7 𝑋 = ran 𝐺
10 exidres.2 . . . . . . 7 𝑈 = (GId‘𝐺)
119, 10, 1exidreslem 34302 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
1211simprd 491 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
1312adantr 474 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
149, 10, 1exidres 34303 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
15 elin 4019 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) ↔ (𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ))
16 rngopidOLD 34278 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻)
1715, 16sylbir 227 . . . . . . 7 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻)
1817ancoms 452 . . . . . 6 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
1914, 18sylan 575 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
2019raleqdv 3340 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
2113, 20mpbird 249 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
2211simpld 490 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
2322adantr 474 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻)
2423, 19eleqtrrd 2862 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻)
254exidu1 34281 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2615, 25sylbir 227 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2726ancoms 452 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2814, 27sylan 575 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
29 oveq1 6929 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥))
3029eqeq1d 2780 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥))
3130ovanraleqv 6946 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3231riota2 6905 . . . 4 ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3324, 28, 32syl2anc 579 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3421, 33mpbid 224 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)
358, 34eqtrd 2814 1 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  ∃!wreu 3092  Vcvv 3398  cin 3791  wss 3792   × cxp 5353  dom cdm 5355  ran crn 5356  cres 5357  cfv 6135  crio 6882  (class class class)co 6922  GIdcgi 27917   ExId cexid 34269  Magmacmagm 34273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fo 6141  df-fv 6143  df-riota 6883  df-ov 6925  df-gid 27921  df-exid 34270  df-mgmOLD 34274
This theorem is referenced by:  isdrngo2  34383
  Copyright terms: Public domain W3C validator