Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Structured version   Visualization version   GIF version

Theorem exidresid 37918
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidresid (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)

Proof of Theorem exidresid
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
2 resexg 5976 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V)
31, 2eqeltrid 2835 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V)
4 eqid 2731 . . . . . 6 ran 𝐻 = ran 𝐻
54gidval 30487 . . . . 5 (𝐻 ∈ V → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
63, 5syl 17 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
763ad2ant1 1133 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
87adantr 480 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
9 exidres.1 . . . . . . 7 𝑋 = ran 𝐺
10 exidres.2 . . . . . . 7 𝑈 = (GId‘𝐺)
119, 10, 1exidreslem 37916 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
1211simprd 495 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
1312adantr 480 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
149, 10, 1exidres 37917 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
15 elin 3918 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) ↔ (𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ))
16 rngopidOLD 37892 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻)
1715, 16sylbir 235 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻)
1817ancoms 458 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
1914, 18sylan 580 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
2013, 19raleqtrrdv 3296 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
2111simpld 494 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
2221adantr 480 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻)
2322, 19eleqtrrd 2834 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻)
244exidu1 37895 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2515, 24sylbir 235 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2625ancoms 458 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2714, 26sylan 580 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
28 oveq1 7353 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥))
2928eqeq1d 2733 . . . . . 6 (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥))
3029ovanraleqv 7370 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3130riota2 7328 . . . 4 ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3223, 27, 31syl2anc 584 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3320, 32mpbid 232 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)
348, 33eqtrd 2766 1 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  cin 3901  wss 3902   × cxp 5614  dom cdm 5616  ran crn 5617  cres 5618  cfv 6481  crio 7302  (class class class)co 7346  GIdcgi 30465   ExId cexid 37883  Magmacmagm 37887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-ov 7349  df-gid 30469  df-exid 37884  df-mgmOLD 37888
This theorem is referenced by:  isdrngo2  37997
  Copyright terms: Public domain W3C validator