| Step | Hyp | Ref
| Expression |
| 1 | | exidres.3 |
. . . . . 6
⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) |
| 2 | | resexg 6019 |
. . . . . 6
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ (𝐺 ↾ (𝑌 × 𝑌)) ∈ V) |
| 3 | 1, 2 | eqeltrid 2839 |
. . . . 5
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ 𝐻 ∈
V) |
| 4 | | eqid 2736 |
. . . . . 6
⊢ ran 𝐻 = ran 𝐻 |
| 5 | 4 | gidval 30498 |
. . . . 5
⊢ (𝐻 ∈ V →
(GId‘𝐻) =
(℩𝑢 ∈ ran
𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 6 | 3, 5 | syl 17 |
. . . 4
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ (GId‘𝐻) =
(℩𝑢 ∈ ran
𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 7 | 6 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (GId‘𝐻) = (℩𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 8 | 7 | adantr 480 |
. 2
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (℩𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 9 | | exidres.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
| 10 | | exidres.2 |
. . . . . . 7
⊢ 𝑈 = (GId‘𝐺) |
| 11 | 9, 10, 1 | exidreslem 37906 |
. . . . . 6
⊢ ((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
| 12 | 11 | simprd 495 |
. . . . 5
⊢ ((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) |
| 14 | 9, 10, 1 | exidres 37907 |
. . . . 5
⊢ ((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
| 15 | | elin 3947 |
. . . . . . 7
⊢ (𝐻 ∈ (Magma ∩ ExId )
↔ (𝐻 ∈ Magma
∧ 𝐻 ∈ ExId
)) |
| 16 | | rngopidOLD 37882 |
. . . . . . 7
⊢ (𝐻 ∈ (Magma ∩ ExId )
→ ran 𝐻 = dom dom
𝐻) |
| 17 | 15, 16 | sylbir 235 |
. . . . . 6
⊢ ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻) |
| 18 | 17 | ancoms 458 |
. . . . 5
⊢ ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻) |
| 19 | 14, 18 | sylan 580 |
. . . 4
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻) |
| 20 | 13, 19 | raleqtrrdv 3313 |
. . 3
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) |
| 21 | 11 | simpld 494 |
. . . . . 6
⊢ ((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝑈 ∈ dom dom 𝐻) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻) |
| 23 | 22, 19 | eleqtrrd 2838 |
. . . 4
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻) |
| 24 | 4 | exidu1 37885 |
. . . . . . 7
⊢ (𝐻 ∈ (Magma ∩ ExId )
→ ∃!𝑢 ∈ ran
𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 25 | 15, 24 | sylbir 235 |
. . . . . 6
⊢ ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) →
∃!𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 26 | 25 | ancoms 458 |
. . . . 5
⊢ ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) →
∃!𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 27 | 14, 26 | sylan 580 |
. . . 4
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 28 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥)) |
| 29 | 28 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥)) |
| 30 | 29 | ovanraleqv 7434 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
| 31 | 30 | riota2 7392 |
. . . 4
⊢ ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (℩𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)) |
| 32 | 23, 27, 31 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (℩𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)) |
| 33 | 20, 32 | mpbid 232 |
. 2
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (℩𝑢 ∈ ran 𝐻∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈) |
| 34 | 8, 33 | eqtrd 2771 |
1
⊢ (((𝐺 ∈ (Magma ∩ ExId )
∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈) |