MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem2 Structured version   Visualization version   GIF version

Theorem gsumvallem2 18472
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b 𝐵 = (Base‘𝐺)
gsumvallem2.z 0 = (0g𝐺)
gsumvallem2.p + = (+g𝐺)
gsumvallem2.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
gsumvallem2 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumvallem2.z . . 3 0 = (0g𝐺)
3 gsumvallem2.p . . 3 + = (+g𝐺)
4 gsumvallem2.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
51, 2, 3, 4mgmidsssn0 18356 . 2 (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 })
61, 2mndidcl 18400 . . . 4 (𝐺 ∈ Mnd → 0𝐵)
71, 3, 2mndlrid 18404 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
87ralrimiva 3103 . . . 4 (𝐺 ∈ Mnd → ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
9 oveq1 7282 . . . . . . 7 (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦))
109eqeq1d 2740 . . . . . 6 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦))
1110ovanraleqv 7299 . . . . 5 (𝑥 = 0 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
1211, 4elrab2 3627 . . . 4 ( 0𝑂 ↔ ( 0𝐵 ∧ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
136, 8, 12sylanbrc 583 . . 3 (𝐺 ∈ Mnd → 0𝑂)
1413snssd 4742 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂)
155, 14eqssd 3938 1 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  gsumz  18474  gsumval3a  19504
  Copyright terms: Public domain W3C validator