![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumvallem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
gsumvallem2.p | ⊢ + = (+g‘𝐺) |
gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | 1, 2, 3, 4 | mgmidsssn0 18590 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
6 | 1, 2 | mndidcl 18639 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
7 | 1, 3, 2 | mndlrid 18643 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
8 | 7 | ralrimiva 3146 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
9 | oveq1 7415 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
10 | 9 | eqeq1d 2734 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
11 | 10 | ovanraleqv 7432 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
12 | 11, 4 | elrab2 3686 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
13 | 6, 8, 12 | sylanbrc 583 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
14 | 13 | snssd 4812 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
15 | 5, 14 | eqssd 3999 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 {csn 4628 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Mndcmnd 18624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 |
This theorem is referenced by: gsumz 18716 gsumval3a 19770 |
Copyright terms: Public domain | W3C validator |