| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
| gsumvallem2.p | ⊢ + = (+g‘𝐺) |
| gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
| Ref | Expression |
|---|---|
| gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
| 5 | 1, 2, 3, 4 | mgmidsssn0 18655 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
| 6 | 1, 2 | mndidcl 18732 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 1, 3, 2 | mndlrid 18736 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
| 8 | 7 | ralrimiva 3133 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
| 9 | oveq1 7417 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
| 10 | 9 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
| 11 | 10 | ovanraleqv 7434 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
| 12 | 11, 4 | elrab2 3679 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
| 13 | 6, 8, 12 | sylanbrc 583 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
| 14 | 13 | snssd 4790 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
| 15 | 5, 14 | eqssd 3981 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: gsumz 18819 gsumval3a 19889 |
| Copyright terms: Public domain | W3C validator |