MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem2 Structured version   Visualization version   GIF version

Theorem gsumvallem2 18737
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b 𝐵 = (Base‘𝐺)
gsumvallem2.z 0 = (0g𝐺)
gsumvallem2.p + = (+g𝐺)
gsumvallem2.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
gsumvallem2 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumvallem2.z . . 3 0 = (0g𝐺)
3 gsumvallem2.p . . 3 + = (+g𝐺)
4 gsumvallem2.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
51, 2, 3, 4mgmidsssn0 18575 . 2 (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 })
61, 2mndidcl 18652 . . . 4 (𝐺 ∈ Mnd → 0𝐵)
71, 3, 2mndlrid 18656 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
87ralrimiva 3125 . . . 4 (𝐺 ∈ Mnd → ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
9 oveq1 7376 . . . . . . 7 (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦))
109eqeq1d 2731 . . . . . 6 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦))
1110ovanraleqv 7393 . . . . 5 (𝑥 = 0 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
1211, 4elrab2 3659 . . . 4 ( 0𝑂 ↔ ( 0𝐵 ∧ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
136, 8, 12sylanbrc 583 . . 3 (𝐺 ∈ Mnd → 0𝑂)
1413snssd 4769 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂)
155, 14eqssd 3961 1 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638
This theorem is referenced by:  gsumz  18739  gsumval3a  19809
  Copyright terms: Public domain W3C validator