| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
| gsumvallem2.p | ⊢ + = (+g‘𝐺) |
| gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
| Ref | Expression |
|---|---|
| gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
| 5 | 1, 2, 3, 4 | mgmidsssn0 18599 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
| 6 | 1, 2 | mndidcl 18676 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 1, 3, 2 | mndlrid 18680 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
| 8 | 7 | ralrimiva 3125 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
| 9 | oveq1 7394 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
| 10 | 9 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
| 11 | 10 | ovanraleqv 7411 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
| 12 | 11, 4 | elrab2 3662 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
| 13 | 6, 8, 12 | sylanbrc 583 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
| 14 | 13 | snssd 4773 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
| 15 | 5, 14 | eqssd 3964 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: gsumz 18763 gsumval3a 19833 |
| Copyright terms: Public domain | W3C validator |