![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumvallem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
gsumvallem2.p | ⊢ + = (+g‘𝐺) |
gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | 1, 2, 3, 4 | mgmidsssn0 17655 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
6 | 1, 2 | mndidcl 17694 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
7 | 1, 3, 2 | mndlrid 17696 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
8 | 7 | ralrimiva 3148 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
9 | oveq1 6929 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
10 | 9 | eqeq1d 2780 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
11 | 10 | ovanraleqv 6946 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
12 | 11, 4 | elrab2 3576 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
13 | 6, 8, 12 | sylanbrc 578 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
14 | 13 | snssd 4571 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
15 | 5, 14 | eqssd 3838 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 {csn 4398 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 0gc0g 16486 Mndcmnd 17680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-riota 6883 df-ov 6925 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 |
This theorem is referenced by: gsumz 17760 gsumval3a 18690 |
Copyright terms: Public domain | W3C validator |