![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumvallem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumvallem2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumvallem2.z | ⊢ 0 = (0g‘𝐺) |
gsumvallem2.p | ⊢ + = (+g‘𝐺) |
gsumvallem2.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gsumvallem2 | ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumvallem2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumvallem2.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumvallem2.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | 1, 2, 3, 4 | mgmidsssn0 18710 | . 2 ⊢ (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 }) |
6 | 1, 2 | mndidcl 18787 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
7 | 1, 3, 2 | mndlrid 18791 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
8 | 7 | ralrimiva 3152 | . . . 4 ⊢ (𝐺 ∈ Mnd → ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)) |
9 | oveq1 7455 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦)) | |
10 | 9 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦)) |
11 | 10 | ovanraleqv 7472 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
12 | 11, 4 | elrab2 3711 | . . . 4 ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))) |
13 | 6, 8, 12 | sylanbrc 582 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑂) |
14 | 13 | snssd 4834 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂) |
15 | 5, 14 | eqssd 4026 | 1 ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: gsumz 18871 gsumval3a 19945 |
Copyright terms: Public domain | W3C validator |