Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
p1val.b | ⊢ 𝐵 = (Base‘𝐾) |
p1val.u | ⊢ 𝑈 = (lub‘𝐾) |
p1val.t | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
p1val | ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p1val.t | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾)) | |
4 | p1val.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
5 | 3, 4 | eqtr4di 2797 | . . . . 5 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
7 | p1val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | eqtr4di 2797 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
9 | 5, 8 | fveq12d 6763 | . . . 4 ⊢ (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈‘𝐵)) |
10 | df-p1 18059 | . . . 4 ⊢ 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘))) | |
11 | fvex 6769 | . . . 4 ⊢ (𝑈‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 6857 | . . 3 ⊢ (𝐾 ∈ V → (1.‘𝐾) = (𝑈‘𝐵)) |
13 | 2, 12 | eqtrid 2790 | . 2 ⊢ (𝐾 ∈ V → 1 = (𝑈‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 Basecbs 16840 lubclub 17942 1.cp1 18057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-p1 18059 |
This theorem is referenced by: ple1 18063 clatp1cl 31157 xrsp1 31193 op1cl 37126 |
Copyright terms: Public domain | W3C validator |