![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p1val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
p1val.b | ⊢ 𝐵 = (Base‘𝐾) |
p1val.u | ⊢ 𝑈 = (lub‘𝐾) |
p1val.t | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
p1val | ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p1val.t | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾)) | |
4 | p1val.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
5 | 3, 4 | eqtr4di 2798 | . . . . 5 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈) |
6 | fveq2 6920 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
7 | p1val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | eqtr4di 2798 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
9 | 5, 8 | fveq12d 6927 | . . . 4 ⊢ (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈‘𝐵)) |
10 | df-p1 18496 | . . . 4 ⊢ 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘))) | |
11 | fvex 6933 | . . . 4 ⊢ (𝑈‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 7029 | . . 3 ⊢ (𝐾 ∈ V → (1.‘𝐾) = (𝑈‘𝐵)) |
13 | 2, 12 | eqtrid 2792 | . 2 ⊢ (𝐾 ∈ V → 1 = (𝑈‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 Basecbs 17258 lubclub 18379 1.cp1 18494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-p1 18496 |
This theorem is referenced by: ple1 18500 clatp1cl 32950 xrsp1 32996 op1cl 39141 |
Copyright terms: Public domain | W3C validator |