MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1val Structured version   Visualization version   GIF version

Theorem p1val 18334
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
p1val.b 𝐵 = (Base‘𝐾)
p1val.u 𝑈 = (lub‘𝐾)
p1val.t 1 = (1.‘𝐾)
Assertion
Ref Expression
p1val (𝐾𝑉1 = (𝑈𝐵))

Proof of Theorem p1val
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝑉𝐾 ∈ V)
2 p1val.t . . 3 1 = (1.‘𝐾)
3 fveq2 6828 . . . . . 6 (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾))
4 p1val.u . . . . . 6 𝑈 = (lub‘𝐾)
53, 4eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈)
6 fveq2 6828 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
7 p1val.b . . . . . 6 𝐵 = (Base‘𝐾)
86, 7eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
95, 8fveq12d 6835 . . . 4 (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈𝐵))
10 df-p1 18332 . . . 4 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘)))
11 fvex 6841 . . . 4 (𝑈𝐵) ∈ V
129, 10, 11fvmpt 6935 . . 3 (𝐾 ∈ V → (1.‘𝐾) = (𝑈𝐵))
132, 12eqtrid 2780 . 2 (𝐾 ∈ V → 1 = (𝑈𝐵))
141, 13syl 17 1 (𝐾𝑉1 = (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cfv 6486  Basecbs 17122  lubclub 18217  1.cp1 18330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-p1 18332
This theorem is referenced by:  ple1  18336  clatp1cl  32965  xrsp1  33001  op1cl  39304
  Copyright terms: Public domain W3C validator