| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p1val | Structured version Visualization version GIF version | ||
| Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| p1val.b | ⊢ 𝐵 = (Base‘𝐾) |
| p1val.u | ⊢ 𝑈 = (lub‘𝐾) |
| p1val.t | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| p1val | ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | p1val.t | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾)) | |
| 4 | p1val.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . 5 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈) |
| 6 | fveq2 6858 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 7 | p1val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2782 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 9 | 5, 8 | fveq12d 6865 | . . . 4 ⊢ (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈‘𝐵)) |
| 10 | df-p1 18385 | . . . 4 ⊢ 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘))) | |
| 11 | fvex 6871 | . . . 4 ⊢ (𝑈‘𝐵) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6968 | . . 3 ⊢ (𝐾 ∈ V → (1.‘𝐾) = (𝑈‘𝐵)) |
| 13 | 2, 12 | eqtrid 2776 | . 2 ⊢ (𝐾 ∈ V → 1 = (𝑈‘𝐵)) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 Basecbs 17179 lubclub 18270 1.cp1 18383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-p1 18385 |
| This theorem is referenced by: ple1 18389 clatp1cl 32903 xrsp1 32951 op1cl 39178 |
| Copyright terms: Public domain | W3C validator |