MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1val Structured version   Visualization version   GIF version

Theorem p1val 18061
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
p1val.b 𝐵 = (Base‘𝐾)
p1val.u 𝑈 = (lub‘𝐾)
p1val.t 1 = (1.‘𝐾)
Assertion
Ref Expression
p1val (𝐾𝑉1 = (𝑈𝐵))

Proof of Theorem p1val
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝑉𝐾 ∈ V)
2 p1val.t . . 3 1 = (1.‘𝐾)
3 fveq2 6756 . . . . . 6 (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾))
4 p1val.u . . . . . 6 𝑈 = (lub‘𝐾)
53, 4eqtr4di 2797 . . . . 5 (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈)
6 fveq2 6756 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
7 p1val.b . . . . . 6 𝐵 = (Base‘𝐾)
86, 7eqtr4di 2797 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
95, 8fveq12d 6763 . . . 4 (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈𝐵))
10 df-p1 18059 . . . 4 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘)))
11 fvex 6769 . . . 4 (𝑈𝐵) ∈ V
129, 10, 11fvmpt 6857 . . 3 (𝐾 ∈ V → (1.‘𝐾) = (𝑈𝐵))
132, 12eqtrid 2790 . 2 (𝐾 ∈ V → 1 = (𝑈𝐵))
141, 13syl 17 1 (𝐾𝑉1 = (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cfv 6418  Basecbs 16840  lubclub 17942  1.cp1 18057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-p1 18059
This theorem is referenced by:  ple1  18063  clatp1cl  31157  xrsp1  31193  op1cl  37126
  Copyright terms: Public domain W3C validator