Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
p1val.b | ⊢ 𝐵 = (Base‘𝐾) |
p1val.u | ⊢ 𝑈 = (lub‘𝐾) |
p1val.t | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
p1val | ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3429 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p1val.t | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | fveq2 6659 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾)) | |
4 | p1val.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
5 | 3, 4 | eqtr4di 2812 | . . . . 5 ⊢ (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈) |
6 | fveq2 6659 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
7 | p1val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | eqtr4di 2812 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
9 | 5, 8 | fveq12d 6666 | . . . 4 ⊢ (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈‘𝐵)) |
10 | df-p1 17709 | . . . 4 ⊢ 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘))) | |
11 | fvex 6672 | . . . 4 ⊢ (𝑈‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 6760 | . . 3 ⊢ (𝐾 ∈ V → (1.‘𝐾) = (𝑈‘𝐵)) |
13 | 2, 12 | syl5eq 2806 | . 2 ⊢ (𝐾 ∈ V → 1 = (𝑈‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ‘cfv 6336 Basecbs 16534 lubclub 17611 1.cp1 17707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 df-p1 17709 |
This theorem is referenced by: ple1 17713 clatp1cl 30774 xrsp1 30810 op1cl 36754 |
Copyright terms: Public domain | W3C validator |