MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ple1 Structured version   Visualization version   GIF version

Theorem ple1 18334
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
ple1.b 𝐵 = (Base‘𝐾)
ple1.u 𝑈 = (lub‘𝐾)
ple1.l = (le‘𝐾)
ple1.1 1 = (1.‘𝐾)
ple1.k (𝜑𝐾𝑉)
ple1.x (𝜑𝑋𝐵)
ple1.d (𝜑𝐵 ∈ dom 𝑈)
Assertion
Ref Expression
ple1 (𝜑𝑋 1 )

Proof of Theorem ple1
StepHypRef Expression
1 ple1.b . . 3 𝐵 = (Base‘𝐾)
2 ple1.l . . 3 = (le‘𝐾)
3 ple1.u . . 3 𝑈 = (lub‘𝐾)
4 ple1.k . . 3 (𝜑𝐾𝑉)
5 ple1.d . . 3 (𝜑𝐵 ∈ dom 𝑈)
6 ple1.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6luble 18263 . 2 (𝜑𝑋 (𝑈𝐵))
8 ple1.1 . . . 4 1 = (1.‘𝐾)
91, 3, 8p1val 18332 . . 3 (𝐾𝑉1 = (𝑈𝐵))
104, 9syl 17 . 2 (𝜑1 = (𝑈𝐵))
117, 10breqtrrd 5120 1 (𝜑𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5092  dom cdm 5619  cfv 6482  Basecbs 17120  lecple 17168  lubclub 18215  1.cp1 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-lub 18250  df-p1 18330
This theorem is referenced by:  ople1  39190  lhp2lt  40000
  Copyright terms: Public domain W3C validator