![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ple1 | Structured version Visualization version GIF version |
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
ple1.b | β’ π΅ = (BaseβπΎ) |
ple1.u | β’ π = (lubβπΎ) |
ple1.l | β’ β€ = (leβπΎ) |
ple1.1 | β’ 1 = (1.βπΎ) |
ple1.k | β’ (π β πΎ β π) |
ple1.x | β’ (π β π β π΅) |
ple1.d | β’ (π β π΅ β dom π) |
Ref | Expression |
---|---|
ple1 | β’ (π β π β€ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ple1.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | ple1.l | . . 3 β’ β€ = (leβπΎ) | |
3 | ple1.u | . . 3 β’ π = (lubβπΎ) | |
4 | ple1.k | . . 3 β’ (π β πΎ β π) | |
5 | ple1.d | . . 3 β’ (π β π΅ β dom π) | |
6 | ple1.x | . . 3 β’ (π β π β π΅) | |
7 | 1, 2, 3, 4, 5, 6 | luble 18316 | . 2 β’ (π β π β€ (πβπ΅)) |
8 | ple1.1 | . . . 4 β’ 1 = (1.βπΎ) | |
9 | 1, 3, 8 | p1val 18385 | . . 3 β’ (πΎ β π β 1 = (πβπ΅)) |
10 | 4, 9 | syl 17 | . 2 β’ (π β 1 = (πβπ΅)) |
11 | 7, 10 | breqtrrd 5167 | 1 β’ (π β π β€ 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5139 dom cdm 5667 βcfv 6534 Basecbs 17145 lecple 17205 lubclub 18266 1.cp1 18381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-lub 18303 df-p1 18383 |
This theorem is referenced by: ople1 38555 lhp2lt 39366 |
Copyright terms: Public domain | W3C validator |