![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ple1 | Structured version Visualization version GIF version |
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
ple1.b | β’ π΅ = (BaseβπΎ) |
ple1.u | β’ π = (lubβπΎ) |
ple1.l | β’ β€ = (leβπΎ) |
ple1.1 | β’ 1 = (1.βπΎ) |
ple1.k | β’ (π β πΎ β π) |
ple1.x | β’ (π β π β π΅) |
ple1.d | β’ (π β π΅ β dom π) |
Ref | Expression |
---|---|
ple1 | β’ (π β π β€ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ple1.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | ple1.l | . . 3 β’ β€ = (leβπΎ) | |
3 | ple1.u | . . 3 β’ π = (lubβπΎ) | |
4 | ple1.k | . . 3 β’ (π β πΎ β π) | |
5 | ple1.d | . . 3 β’ (π β π΅ β dom π) | |
6 | ple1.x | . . 3 β’ (π β π β π΅) | |
7 | 1, 2, 3, 4, 5, 6 | luble 18308 | . 2 β’ (π β π β€ (πβπ΅)) |
8 | ple1.1 | . . . 4 β’ 1 = (1.βπΎ) | |
9 | 1, 3, 8 | p1val 18377 | . . 3 β’ (πΎ β π β 1 = (πβπ΅)) |
10 | 4, 9 | syl 17 | . 2 β’ (π β 1 = (πβπ΅)) |
11 | 7, 10 | breqtrrd 5175 | 1 β’ (π β π β€ 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 class class class wbr 5147 dom cdm 5675 βcfv 6540 Basecbs 17140 lecple 17200 lubclub 18258 1.cp1 18373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-lub 18295 df-p1 18375 |
This theorem is referenced by: ople1 38049 lhp2lt 38860 |
Copyright terms: Public domain | W3C validator |