MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ple1 Structured version   Visualization version   GIF version

Theorem ple1 18413
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
ple1.b 𝐵 = (Base‘𝐾)
ple1.u 𝑈 = (lub‘𝐾)
ple1.l = (le‘𝐾)
ple1.1 1 = (1.‘𝐾)
ple1.k (𝜑𝐾𝑉)
ple1.x (𝜑𝑋𝐵)
ple1.d (𝜑𝐵 ∈ dom 𝑈)
Assertion
Ref Expression
ple1 (𝜑𝑋 1 )

Proof of Theorem ple1
StepHypRef Expression
1 ple1.b . . 3 𝐵 = (Base‘𝐾)
2 ple1.l . . 3 = (le‘𝐾)
3 ple1.u . . 3 𝑈 = (lub‘𝐾)
4 ple1.k . . 3 (𝜑𝐾𝑉)
5 ple1.d . . 3 (𝜑𝐵 ∈ dom 𝑈)
6 ple1.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6luble 18342 . 2 (𝜑𝑋 (𝑈𝐵))
8 ple1.1 . . . 4 1 = (1.‘𝐾)
91, 3, 8p1val 18411 . . 3 (𝐾𝑉1 = (𝑈𝐵))
104, 9syl 17 . 2 (𝜑1 = (𝑈𝐵))
117, 10breqtrrd 5170 1 (𝜑𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5142  dom cdm 5672  cfv 6542  Basecbs 17171  lecple 17231  lubclub 18292  1.cp1 18407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-lub 18329  df-p1 18409
This theorem is referenced by:  ople1  38600  lhp2lt  39411
  Copyright terms: Public domain W3C validator