| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clatp1cl | Structured version Visualization version GIF version | ||
| Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| Ref | Expression |
|---|---|
| clatp1cl.b | ⊢ 𝐵 = (Base‘𝑊) |
| clatp1cl.1 | ⊢ 1 = (1.‘𝑊) |
| Ref | Expression |
|---|---|
| clatp1cl | ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatp1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (lub‘𝑊) = (lub‘𝑊) | |
| 3 | clatp1cl.1 | . . 3 ⊢ 1 = (1.‘𝑊) | |
| 4 | 1, 2, 3 | p1val 18436 | . 2 ⊢ (𝑊 ∈ CLat → 1 = ((lub‘𝑊)‘𝐵)) |
| 5 | ssid 3981 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | 1, 2 | clatlubcl 18511 | . . 3 ⊢ ((𝑊 ∈ CLat ∧ 𝐵 ⊆ 𝐵) → ((lub‘𝑊)‘𝐵) ∈ 𝐵) |
| 7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝑊 ∈ CLat → ((lub‘𝑊)‘𝐵) ∈ 𝐵) |
| 8 | 4, 7 | eqeltrd 2834 | 1 ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 Basecbs 17226 lubclub 18319 1.cp1 18432 CLatccla 18506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-lub 18354 df-glb 18355 df-p1 18434 df-clat 18507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |