![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clatp1cl | Structured version Visualization version GIF version |
Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
Ref | Expression |
---|---|
clatp1cl.b | ⊢ 𝐵 = (Base‘𝑊) |
clatp1cl.1 | ⊢ 1 = (1.‘𝑊) |
Ref | Expression |
---|---|
clatp1cl | ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatp1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (lub‘𝑊) = (lub‘𝑊) | |
3 | clatp1cl.1 | . . 3 ⊢ 1 = (1.‘𝑊) | |
4 | 1, 2, 3 | p1val 18492 | . 2 ⊢ (𝑊 ∈ CLat → 1 = ((lub‘𝑊)‘𝐵)) |
5 | ssid 4031 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
6 | 1, 2 | clatlubcl 18567 | . . 3 ⊢ ((𝑊 ∈ CLat ∧ 𝐵 ⊆ 𝐵) → ((lub‘𝑊)‘𝐵) ∈ 𝐵) |
7 | 5, 6 | mpan2 690 | . 2 ⊢ (𝑊 ∈ CLat → ((lub‘𝑊)‘𝐵) ∈ 𝐵) |
8 | 4, 7 | eqeltrd 2844 | 1 ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6568 Basecbs 17252 lubclub 18373 1.cp1 18488 CLatccla 18562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-lub 18410 df-glb 18411 df-p1 18490 df-clat 18563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |