Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clatp1cl Structured version   Visualization version   GIF version

Theorem clatp1cl 32698
Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.)
Hypotheses
Ref Expression
clatp1cl.b 𝐵 = (Base‘𝑊)
clatp1cl.1 1 = (1.‘𝑊)
Assertion
Ref Expression
clatp1cl (𝑊 ∈ CLat → 1𝐵)

Proof of Theorem clatp1cl
StepHypRef Expression
1 clatp1cl.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2728 . . 3 (lub‘𝑊) = (lub‘𝑊)
3 clatp1cl.1 . . 3 1 = (1.‘𝑊)
41, 2, 3p1val 18413 . 2 (𝑊 ∈ CLat → 1 = ((lub‘𝑊)‘𝐵))
5 ssid 4000 . . 3 𝐵𝐵
61, 2clatlubcl 18488 . . 3 ((𝑊 ∈ CLat ∧ 𝐵𝐵) → ((lub‘𝑊)‘𝐵) ∈ 𝐵)
75, 6mpan2 690 . 2 (𝑊 ∈ CLat → ((lub‘𝑊)‘𝐵) ∈ 𝐵)
84, 7eqeltrd 2829 1 (𝑊 ∈ CLat → 1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3945  cfv 6542  Basecbs 17173  lubclub 18294  1.cp1 18409  CLatccla 18483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-lub 18331  df-glb 18332  df-p1 18411  df-clat 18484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator