Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clatp1cl Structured version   Visualization version   GIF version

Theorem clatp1cl 31157
Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.)
Hypotheses
Ref Expression
clatp1cl.b 𝐵 = (Base‘𝑊)
clatp1cl.1 1 = (1.‘𝑊)
Assertion
Ref Expression
clatp1cl (𝑊 ∈ CLat → 1𝐵)

Proof of Theorem clatp1cl
StepHypRef Expression
1 clatp1cl.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2738 . . 3 (lub‘𝑊) = (lub‘𝑊)
3 clatp1cl.1 . . 3 1 = (1.‘𝑊)
41, 2, 3p1val 18061 . 2 (𝑊 ∈ CLat → 1 = ((lub‘𝑊)‘𝐵))
5 ssid 3939 . . 3 𝐵𝐵
61, 2clatlubcl 18136 . . 3 ((𝑊 ∈ CLat ∧ 𝐵𝐵) → ((lub‘𝑊)‘𝐵) ∈ 𝐵)
75, 6mpan2 687 . 2 (𝑊 ∈ CLat → ((lub‘𝑊)‘𝐵) ∈ 𝐵)
84, 7eqeltrd 2839 1 (𝑊 ∈ CLat → 1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  lubclub 17942  1.cp1 18057  CLatccla 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-lub 17979  df-glb 17980  df-p1 18059  df-clat 18132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator