MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0le Structured version   Visualization version   GIF version

Theorem p0le 18333
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
p0le.b 𝐵 = (Base‘𝐾)
p0le.g 𝐺 = (glb‘𝐾)
p0le.l = (le‘𝐾)
p0le.0 0 = (0.‘𝐾)
p0le.k (𝜑𝐾𝑉)
p0le.x (𝜑𝑋𝐵)
p0le.d (𝜑𝐵 ∈ dom 𝐺)
Assertion
Ref Expression
p0le (𝜑0 𝑋)

Proof of Theorem p0le
StepHypRef Expression
1 p0le.k . . 3 (𝜑𝐾𝑉)
2 p0le.b . . . 4 𝐵 = (Base‘𝐾)
3 p0le.g . . . 4 𝐺 = (glb‘𝐾)
4 p0le.0 . . . 4 0 = (0.‘𝐾)
52, 3, 4p0val 18331 . . 3 (𝐾𝑉0 = (𝐺𝐵))
61, 5syl 17 . 2 (𝜑0 = (𝐺𝐵))
7 p0le.l . . 3 = (le‘𝐾)
8 p0le.d . . 3 (𝜑𝐵 ∈ dom 𝐺)
9 p0le.x . . 3 (𝜑𝑋𝐵)
102, 7, 3, 1, 8, 9glble 18276 . 2 (𝜑 → (𝐺𝐵) 𝑋)
116, 10eqbrtrd 5111 1 (𝜑0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  glbcglb 18216  0.cp0 18327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-glb 18251  df-p0 18329
This theorem is referenced by:  op0le  39233  atl0le  39351
  Copyright terms: Public domain W3C validator