MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0le Structured version   Visualization version   GIF version

Theorem p0le 18364
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
p0le.b 𝐵 = (Base‘𝐾)
p0le.g 𝐺 = (glb‘𝐾)
p0le.l = (le‘𝐾)
p0le.0 0 = (0.‘𝐾)
p0le.k (𝜑𝐾𝑉)
p0le.x (𝜑𝑋𝐵)
p0le.d (𝜑𝐵 ∈ dom 𝐺)
Assertion
Ref Expression
p0le (𝜑0 𝑋)

Proof of Theorem p0le
StepHypRef Expression
1 p0le.k . . 3 (𝜑𝐾𝑉)
2 p0le.b . . . 4 𝐵 = (Base‘𝐾)
3 p0le.g . . . 4 𝐺 = (glb‘𝐾)
4 p0le.0 . . . 4 0 = (0.‘𝐾)
52, 3, 4p0val 18362 . . 3 (𝐾𝑉0 = (𝐺𝐵))
61, 5syl 17 . 2 (𝜑0 = (𝐺𝐵))
7 p0le.l . . 3 = (le‘𝐾)
8 p0le.d . . 3 (𝜑𝐵 ∈ dom 𝐺)
9 p0le.x . . 3 (𝜑𝑋𝐵)
102, 7, 3, 1, 8, 9glble 18307 . 2 (𝜑 → (𝐺𝐵) 𝑋)
116, 10eqbrtrd 5124 1 (𝜑0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  dom cdm 5631  cfv 6499  Basecbs 17155  lecple 17203  glbcglb 18247  0.cp0 18358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-glb 18282  df-p0 18360
This theorem is referenced by:  op0le  39152  atl0le  39270
  Copyright terms: Public domain W3C validator