| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version | ||
| Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| p0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| p0le.g | ⊢ 𝐺 = (glb‘𝐾) |
| p0le.l | ⊢ ≤ = (le‘𝐾) |
| p0le.0 | ⊢ 0 = (0.‘𝐾) |
| p0le.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| p0le.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| p0le.d | ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| p0le | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0le.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 2 | p0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | p0le.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | p0le.0 | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 2, 3, 4 | p0val 18362 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 0 = (𝐺‘𝐵)) |
| 7 | p0le.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 8 | p0le.d | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) | |
| 9 | p0le.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 2, 7, 3, 1, 8, 9 | glble 18307 | . 2 ⊢ (𝜑 → (𝐺‘𝐵) ≤ 𝑋) |
| 11 | 6, 10 | eqbrtrd 5124 | 1 ⊢ (𝜑 → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 Basecbs 17155 lecple 17203 glbcglb 18247 0.cp0 18358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-glb 18282 df-p0 18360 |
| This theorem is referenced by: op0le 39152 atl0le 39270 |
| Copyright terms: Public domain | W3C validator |