| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version | ||
| Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| p0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| p0le.g | ⊢ 𝐺 = (glb‘𝐾) |
| p0le.l | ⊢ ≤ = (le‘𝐾) |
| p0le.0 | ⊢ 0 = (0.‘𝐾) |
| p0le.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| p0le.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| p0le.d | ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| p0le | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0le.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 2 | p0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | p0le.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | p0le.0 | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 2, 3, 4 | p0val 18331 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 0 = (𝐺‘𝐵)) |
| 7 | p0le.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 8 | p0le.d | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) | |
| 9 | p0le.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 2, 7, 3, 1, 8, 9 | glble 18276 | . 2 ⊢ (𝜑 → (𝐺‘𝐵) ≤ 𝑋) |
| 11 | 6, 10 | eqbrtrd 5111 | 1 ⊢ (𝜑 → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lecple 17168 glbcglb 18216 0.cp0 18327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-glb 18251 df-p0 18329 |
| This theorem is referenced by: op0le 39233 atl0le 39351 |
| Copyright terms: Public domain | W3C validator |