![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version |
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
p0le.b | β’ π΅ = (BaseβπΎ) |
p0le.g | β’ πΊ = (glbβπΎ) |
p0le.l | β’ β€ = (leβπΎ) |
p0le.0 | β’ 0 = (0.βπΎ) |
p0le.k | β’ (π β πΎ β π) |
p0le.x | β’ (π β π β π΅) |
p0le.d | β’ (π β π΅ β dom πΊ) |
Ref | Expression |
---|---|
p0le | β’ (π β 0 β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0le.k | . . 3 β’ (π β πΎ β π) | |
2 | p0le.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
3 | p0le.g | . . . 4 β’ πΊ = (glbβπΎ) | |
4 | p0le.0 | . . . 4 β’ 0 = (0.βπΎ) | |
5 | 2, 3, 4 | p0val 18413 | . . 3 β’ (πΎ β π β 0 = (πΊβπ΅)) |
6 | 1, 5 | syl 17 | . 2 β’ (π β 0 = (πΊβπ΅)) |
7 | p0le.l | . . 3 β’ β€ = (leβπΎ) | |
8 | p0le.d | . . 3 β’ (π β π΅ β dom πΊ) | |
9 | p0le.x | . . 3 β’ (π β π β π΅) | |
10 | 2, 7, 3, 1, 8, 9 | glble 18358 | . 2 β’ (π β (πΊβπ΅) β€ π) |
11 | 6, 10 | eqbrtrd 5165 | 1 β’ (π β 0 β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 class class class wbr 5143 dom cdm 5673 βcfv 6543 Basecbs 17174 lecple 17234 glbcglb 18296 0.cp0 18409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-glb 18333 df-p0 18411 |
This theorem is referenced by: op0le 38653 atl0le 38771 |
Copyright terms: Public domain | W3C validator |