| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version | ||
| Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| p0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| p0le.g | ⊢ 𝐺 = (glb‘𝐾) |
| p0le.l | ⊢ ≤ = (le‘𝐾) |
| p0le.0 | ⊢ 0 = (0.‘𝐾) |
| p0le.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| p0le.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| p0le.d | ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| p0le | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0le.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 2 | p0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | p0le.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | p0le.0 | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 2, 3, 4 | p0val 18442 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 0 = (𝐺‘𝐵)) |
| 7 | p0le.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 8 | p0le.d | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) | |
| 9 | p0le.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 2, 7, 3, 1, 8, 9 | glble 18387 | . 2 ⊢ (𝜑 → (𝐺‘𝐵) ≤ 𝑋) |
| 11 | 6, 10 | eqbrtrd 5146 | 1 ⊢ (𝜑 → 0 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 glbcglb 18327 0.cp0 18438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-glb 18362 df-p0 18440 |
| This theorem is referenced by: op0le 39209 atl0le 39327 |
| Copyright terms: Public domain | W3C validator |