MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0le Structured version   Visualization version   GIF version

Theorem p0le 18415
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
p0le.b 𝐡 = (Baseβ€˜πΎ)
p0le.g 𝐺 = (glbβ€˜πΎ)
p0le.l ≀ = (leβ€˜πΎ)
p0le.0 0 = (0.β€˜πΎ)
p0le.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
p0le.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
p0le.d (πœ‘ β†’ 𝐡 ∈ dom 𝐺)
Assertion
Ref Expression
p0le (πœ‘ β†’ 0 ≀ 𝑋)

Proof of Theorem p0le
StepHypRef Expression
1 p0le.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 p0le.b . . . 4 𝐡 = (Baseβ€˜πΎ)
3 p0le.g . . . 4 𝐺 = (glbβ€˜πΎ)
4 p0le.0 . . . 4 0 = (0.β€˜πΎ)
52, 3, 4p0val 18413 . . 3 (𝐾 ∈ 𝑉 β†’ 0 = (πΊβ€˜π΅))
61, 5syl 17 . 2 (πœ‘ β†’ 0 = (πΊβ€˜π΅))
7 p0le.l . . 3 ≀ = (leβ€˜πΎ)
8 p0le.d . . 3 (πœ‘ β†’ 𝐡 ∈ dom 𝐺)
9 p0le.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
102, 7, 3, 1, 8, 9glble 18358 . 2 (πœ‘ β†’ (πΊβ€˜π΅) ≀ 𝑋)
116, 10eqbrtrd 5165 1 (πœ‘ β†’ 0 ≀ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099   class class class wbr 5143  dom cdm 5673  β€˜cfv 6543  Basecbs 17174  lecple 17234  glbcglb 18296  0.cp0 18409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-glb 18333  df-p0 18411
This theorem is referenced by:  op0le  38653  atl0le  38771
  Copyright terms: Public domain W3C validator