![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p0le | Structured version Visualization version GIF version |
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
p0le.b | ⊢ 𝐵 = (Base‘𝐾) |
p0le.g | ⊢ 𝐺 = (glb‘𝐾) |
p0le.l | ⊢ ≤ = (le‘𝐾) |
p0le.0 | ⊢ 0 = (0.‘𝐾) |
p0le.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
p0le.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
p0le.d | ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) |
Ref | Expression |
---|---|
p0le | ⊢ (𝜑 → 0 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0le.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | p0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | p0le.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
4 | p0le.0 | . . . 4 ⊢ 0 = (0.‘𝐾) | |
5 | 2, 3, 4 | p0val 18497 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 0 = (𝐺‘𝐵)) |
7 | p0le.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | p0le.d | . . 3 ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) | |
9 | p0le.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 2, 7, 3, 1, 8, 9 | glble 18442 | . 2 ⊢ (𝜑 → (𝐺‘𝐵) ≤ 𝑋) |
11 | 6, 10 | eqbrtrd 5188 | 1 ⊢ (𝜑 → 0 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 Basecbs 17258 lecple 17318 glbcglb 18380 0.cp0 18493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-glb 18417 df-p0 18495 |
This theorem is referenced by: op0le 39142 atl0le 39260 |
Copyright terms: Public domain | W3C validator |