MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0le Structured version   Visualization version   GIF version

Theorem p0le 18386
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
p0le.b 𝐡 = (Baseβ€˜πΎ)
p0le.g 𝐺 = (glbβ€˜πΎ)
p0le.l ≀ = (leβ€˜πΎ)
p0le.0 0 = (0.β€˜πΎ)
p0le.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
p0le.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
p0le.d (πœ‘ β†’ 𝐡 ∈ dom 𝐺)
Assertion
Ref Expression
p0le (πœ‘ β†’ 0 ≀ 𝑋)

Proof of Theorem p0le
StepHypRef Expression
1 p0le.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 p0le.b . . . 4 𝐡 = (Baseβ€˜πΎ)
3 p0le.g . . . 4 𝐺 = (glbβ€˜πΎ)
4 p0le.0 . . . 4 0 = (0.β€˜πΎ)
52, 3, 4p0val 18384 . . 3 (𝐾 ∈ 𝑉 β†’ 0 = (πΊβ€˜π΅))
61, 5syl 17 . 2 (πœ‘ β†’ 0 = (πΊβ€˜π΅))
7 p0le.l . . 3 ≀ = (leβ€˜πΎ)
8 p0le.d . . 3 (πœ‘ β†’ 𝐡 ∈ dom 𝐺)
9 p0le.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
102, 7, 3, 1, 8, 9glble 18329 . 2 (πœ‘ β†’ (πΊβ€˜π΅) ≀ 𝑋)
116, 10eqbrtrd 5161 1 (πœ‘ β†’ 0 ≀ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   class class class wbr 5139  dom cdm 5667  β€˜cfv 6534  Basecbs 17145  lecple 17205  glbcglb 18267  0.cp0 18380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-glb 18304  df-p0 18382
This theorem is referenced by:  op0le  38550  atl0le  38668
  Copyright terms: Public domain W3C validator