![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrreccl | Structured version Visualization version GIF version |
Description: Positive Pell solutions are closed under reciprocal. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrreccl | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ (Pell14QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pell1234qrreccl 38263 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) | |
2 | 1 | adantrr 710 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) |
3 | pell1234qrre 38261 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
4 | 3 | adantrr 710 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ) |
5 | simprr 791 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 0 < 𝐴) | |
6 | 4, 5 | recgt0d 11289 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 0 < (1 / 𝐴)) |
7 | 2, 6 | jca 509 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ∧ 0 < (1 / 𝐴))) |
8 | 7 | ex 403 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ∧ 0 < (1 / 𝐴)))) |
9 | elpell14qr2 38271 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) | |
10 | elpell14qr2 38271 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((1 / 𝐴) ∈ (Pell14QR‘𝐷) ↔ ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ∧ 0 < (1 / 𝐴)))) | |
11 | 8, 9, 10 | 3imtr4d 286 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → (1 / 𝐴) ∈ (Pell14QR‘𝐷))) |
12 | 11 | imp 397 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ (Pell14QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ∖ cdif 3796 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 ℝcr 10252 0cc0 10253 1c1 10254 < clt 10392 / cdiv 11010 ℕcn 11351 ◻NNcsquarenn 38245 Pell1234QRcpell1234qr 38247 Pell14QRcpell14qr 38248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-sup 8618 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-seq 13097 df-exp 13156 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-pell14qr 38252 df-pell1234qr 38253 |
This theorem is referenced by: pell14qrdivcl 38274 pell14qrexpcl 38276 |
Copyright terms: Public domain | W3C validator |