| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrre | Structured version Visualization version GIF version | ||
| Description: A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| Ref | Expression |
|---|---|
| pell14qrre | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pell14qrss1234 42872 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | |
| 2 | 1 | sselda 3982 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell1234QR‘𝐷)) |
| 3 | pell1234qrre 42868 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∖ cdif 3947 ‘cfv 6560 ℝcr 11155 ℕcn 12267 ◻NNcsquarenn 42852 Pell1234QRcpell1234qr 42854 Pell14QRcpell14qr 42855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-i2m1 11224 ax-1ne0 11225 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-pell14qr 42859 df-pell1234qr 42860 |
| This theorem is referenced by: pell14qrrp 42876 pell14qrdivcl 42881 pell14qrexpclnn0 42882 pell14qrexpcl 42883 pell14qrdich 42885 elpell1qr2 42888 pell14qrgap 42891 pell14qrgapw 42892 pellfundre 42897 pellfundge 42898 pellfundlb 42900 pellfundglb 42901 pellfundex 42902 pellfund14gap 42903 pellfund14 42914 |
| Copyright terms: Public domain | W3C validator |