Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrmulcl | Structured version Visualization version GIF version |
Description: Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrmulcl | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐷 ∈ (ℕ ∖ ◻NN)) | |
2 | simprll 779 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐴 ∈ (Pell1234QR‘𝐷)) | |
3 | simprrl 781 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐵 ∈ (Pell1234QR‘𝐷)) | |
4 | pell1234qrmulcl 40409 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) | |
5 | 1, 2, 3, 4 | syl3anc 1373 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) |
6 | pell1234qrre 40406 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
7 | 2, 6 | syldan 594 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐴 ∈ ℝ) |
8 | pell1234qrre 40406 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → 𝐵 ∈ ℝ) | |
9 | 3, 8 | syldan 594 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐵 ∈ ℝ) |
10 | simprlr 780 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < 𝐴) | |
11 | simprrr 782 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < 𝐵) | |
12 | 7, 9, 10, 11 | mulgt0d 11012 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < (𝐴 · 𝐵)) |
13 | 5, 12 | jca 515 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵))) |
14 | 13 | ex 416 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵)))) |
15 | elpell14qr2 40416 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) | |
16 | elpell14qr2 40416 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐵 ∈ (Pell14QR‘𝐷) ↔ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) | |
17 | 15, 16 | anbi12d 634 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) ↔ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵)))) |
18 | elpell14qr2 40416 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 · 𝐵) ∈ (Pell14QR‘𝐷) ↔ ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵)))) | |
19 | 14, 17, 18 | 3imtr4d 297 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷))) |
20 | 19 | 3impib 1118 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2111 ∖ cdif 3878 class class class wbr 5068 ‘cfv 6398 (class class class)co 7232 ℝcr 10753 0cc0 10754 · cmul 10759 < clt 10892 ℕcn 11855 ◻NNcsquarenn 40390 Pell1234QRcpell1234qr 40392 Pell14QRcpell14qr 40393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-sup 9083 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-n0 12116 df-z 12202 df-uz 12464 df-rp 12612 df-seq 13600 df-exp 13661 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-pell14qr 40397 df-pell1234qr 40398 |
This theorem is referenced by: pell14qrdivcl 40419 pell14qrexpclnn0 40420 pellfund14 40452 |
Copyright terms: Public domain | W3C validator |