Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxext Structured version   Visualization version   GIF version

Theorem permaxext 44957
Description: The Axiom of Extensionality ax-ext 2706 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxext (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝐹
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)

Proof of Theorem permaxext
StepHypRef Expression
1 permmodel.1 . . . . . 6 𝐹:V–1-1-onto→V
2 permmodel.2 . . . . . 6 𝑅 = (𝐹 ∘ E )
3 vex 3461 . . . . . 6 𝑧 ∈ V
4 vex 3461 . . . . . 6 𝑥 ∈ V
51, 2, 3, 4brpermmodel 44955 . . . . 5 (𝑧𝑅𝑥𝑧 ∈ (𝐹𝑥))
6 vex 3461 . . . . . 6 𝑦 ∈ V
71, 2, 3, 6brpermmodel 44955 . . . . 5 (𝑧𝑅𝑦𝑧 ∈ (𝐹𝑦))
85, 7bibi12i 339 . . . 4 ((𝑧𝑅𝑥𝑧𝑅𝑦) ↔ (𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
98albii 1818 . . 3 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
10 dfcleq 2727 . . 3 ((𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
119, 10bitr4i 278 . 2 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) ↔ (𝐹𝑥) = (𝐹𝑦))
12 f1of1 6813 . . . . 5 (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V)
131, 12ax-mp 5 . . . 4 𝐹:V–1-1→V
14 f1veqaeq 7245 . . . 4 ((𝐹:V–1-1→V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1513, 14mpan 690 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1615el2v 3464 . 2 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
1711, 16sylbi 217 1 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2107  Vcvv 3457   class class class wbr 5116   E cep 5549  ccnv 5650  ccom 5655  1-1wf1 6524  1-1-ontowf1o 6526  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-f1o 6534  df-fv 6535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator