| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxext | Structured version Visualization version GIF version | ||
| Description: The Axiom of Extensionality ax-ext 2702 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxext | ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . . . . 6 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . . . . 6 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | vex 3454 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 4 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 44986 | . . . . 5 ⊢ (𝑧𝑅𝑥 ↔ 𝑧 ∈ (𝐹‘𝑥)) |
| 6 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 7 | 1, 2, 3, 6 | brpermmodel 44986 | . . . . 5 ⊢ (𝑧𝑅𝑦 ↔ 𝑧 ∈ (𝐹‘𝑦)) |
| 8 | 5, 7 | bibi12i 339 | . . . 4 ⊢ ((𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 9 | 8 | albii 1819 | . . 3 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 10 | dfcleq 2723 | . . 3 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) | |
| 11 | 9, 10 | bitr4i 278 | . 2 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 12 | f1of1 6801 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V) | |
| 13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ 𝐹:V–1-1→V |
| 14 | f1veqaeq 7233 | . . . 4 ⊢ ((𝐹:V–1-1→V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | mpan 690 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | el2v 3457 | . 2 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
| 17 | 11, 16 | sylbi 217 | 1 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 E cep 5539 ◡ccnv 5639 ∘ ccom 5644 –1-1→wf1 6510 –1-1-onto→wf1o 6512 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-f1o 6520 df-fv 6521 |
| This theorem is referenced by: nregmodelaxext 45001 |
| Copyright terms: Public domain | W3C validator |