| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxext | Structured version Visualization version GIF version | ||
| Description: The Axiom of Extensionality ax-ext 2706 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxext | ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . . . . 6 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . . . . 6 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | vex 3461 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 4 | vex 3461 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 44955 | . . . . 5 ⊢ (𝑧𝑅𝑥 ↔ 𝑧 ∈ (𝐹‘𝑥)) |
| 6 | vex 3461 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 7 | 1, 2, 3, 6 | brpermmodel 44955 | . . . . 5 ⊢ (𝑧𝑅𝑦 ↔ 𝑧 ∈ (𝐹‘𝑦)) |
| 8 | 5, 7 | bibi12i 339 | . . . 4 ⊢ ((𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 9 | 8 | albii 1818 | . . 3 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 10 | dfcleq 2727 | . . 3 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) | |
| 11 | 9, 10 | bitr4i 278 | . 2 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 12 | f1of1 6813 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V) | |
| 13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ 𝐹:V–1-1→V |
| 14 | f1veqaeq 7245 | . . . 4 ⊢ ((𝐹:V–1-1→V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | mpan 690 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | el2v 3464 | . 2 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
| 17 | 11, 16 | sylbi 217 | 1 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Vcvv 3457 class class class wbr 5116 E cep 5549 ◡ccnv 5650 ∘ ccom 5655 –1-1→wf1 6524 –1-1-onto→wf1o 6526 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-f1o 6534 df-fv 6535 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |