| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxext | Structured version Visualization version GIF version | ||
| Description: The Axiom of Extensionality ax-ext 2703 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxext | ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . . . . 6 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . . . . 6 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 4 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 45036 | . . . . 5 ⊢ (𝑧𝑅𝑥 ↔ 𝑧 ∈ (𝐹‘𝑥)) |
| 6 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 7 | 1, 2, 3, 6 | brpermmodel 45036 | . . . . 5 ⊢ (𝑧𝑅𝑦 ↔ 𝑧 ∈ (𝐹‘𝑦)) |
| 8 | 5, 7 | bibi12i 339 | . . . 4 ⊢ ((𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 9 | 8 | albii 1820 | . . 3 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) |
| 10 | dfcleq 2724 | . . 3 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ (𝐹‘𝑦))) | |
| 11 | 9, 10 | bitr4i 278 | . 2 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 12 | f1of1 6757 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V) | |
| 13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ 𝐹:V–1-1→V |
| 14 | f1veqaeq 7185 | . . . 4 ⊢ ((𝐹:V–1-1→V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | mpan 690 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | el2v 3443 | . 2 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
| 17 | 11, 16 | sylbi 217 | 1 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 E cep 5510 ◡ccnv 5610 ∘ ccom 5615 –1-1→wf1 6473 –1-1-onto→wf1o 6475 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: nregmodelaxext 45051 |
| Copyright terms: Public domain | W3C validator |