Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxext Structured version   Visualization version   GIF version

Theorem permaxext 44988
Description: The Axiom of Extensionality ax-ext 2702 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxext (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝐹
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)

Proof of Theorem permaxext
StepHypRef Expression
1 permmodel.1 . . . . . 6 𝐹:V–1-1-onto→V
2 permmodel.2 . . . . . 6 𝑅 = (𝐹 ∘ E )
3 vex 3454 . . . . . 6 𝑧 ∈ V
4 vex 3454 . . . . . 6 𝑥 ∈ V
51, 2, 3, 4brpermmodel 44986 . . . . 5 (𝑧𝑅𝑥𝑧 ∈ (𝐹𝑥))
6 vex 3454 . . . . . 6 𝑦 ∈ V
71, 2, 3, 6brpermmodel 44986 . . . . 5 (𝑧𝑅𝑦𝑧 ∈ (𝐹𝑦))
85, 7bibi12i 339 . . . 4 ((𝑧𝑅𝑥𝑧𝑅𝑦) ↔ (𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
98albii 1819 . . 3 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
10 dfcleq 2723 . . 3 ((𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) ↔ 𝑧 ∈ (𝐹𝑦)))
119, 10bitr4i 278 . 2 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) ↔ (𝐹𝑥) = (𝐹𝑦))
12 f1of1 6801 . . . . 5 (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V)
131, 12ax-mp 5 . . . 4 𝐹:V–1-1→V
14 f1veqaeq 7233 . . . 4 ((𝐹:V–1-1→V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1513, 14mpan 690 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1615el2v 3457 . 2 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
1711, 16sylbi 217 1 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5109   E cep 5539  ccnv 5639  ccom 5644  1-1wf1 6510  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-f1o 6520  df-fv 6521
This theorem is referenced by:  nregmodelaxext  45001
  Copyright terms: Public domain W3C validator