Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxrep Structured version   Visualization version   GIF version

Theorem permaxrep 44958
Description: The Axiom of Replacement ax-rep 5246 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxrep (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑦,𝐹,𝑧,𝑤   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑧,𝑤)   𝐹(𝑥)

Proof of Theorem permaxrep
StepHypRef Expression
1 nfa1 2150 . . . 4 𝑦𝑦𝜑
21mof 2561 . . 3 (∃*𝑧𝑦𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
32albii 1818 . 2 (∀𝑤∃*𝑧𝑦𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
4 fvex 6885 . . 3 (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ∈ V
5 nfmo1 2555 . . . . 5 𝑧∃*𝑧𝑦𝜑
65nfal 2322 . . . 4 𝑧𝑤∃*𝑧𝑦𝜑
7 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
8 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
9 vex 3461 . . . . . . 7 𝑧 ∈ V
107, 8, 9, 4brpermmodel 44955 . . . . . 6 (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})))
11 fvex 6885 . . . . . . . . 9 (𝐹𝑥) ∈ V
12 axrep6g 5257 . . . . . . . . 9 (((𝐹𝑥) ∈ V ∧ ∀𝑤∃*𝑧𝑦𝜑) → {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V)
1311, 12mpan 690 . . . . . . . 8 (∀𝑤∃*𝑧𝑦𝜑 → {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V)
14 f1ocnvfv2 7265 . . . . . . . 8 ((𝐹:V–1-1-onto→V ∧ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V) → (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
157, 13, 14sylancr 587 . . . . . . 7 (∀𝑤∃*𝑧𝑦𝜑 → (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
1615eleq2d 2819 . . . . . 6 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧 ∈ (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}))
1710, 16bitrid 283 . . . . 5 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}))
18 df-rex 3060 . . . . . 6 (∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑 ↔ ∃𝑤(𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
19 abid 2716 . . . . . 6 (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ↔ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑)
20 vex 3461 . . . . . . . . 9 𝑤 ∈ V
21 vex 3461 . . . . . . . . 9 𝑥 ∈ V
227, 8, 20, 21brpermmodel 44955 . . . . . . . 8 (𝑤𝑅𝑥𝑤 ∈ (𝐹𝑥))
2322anbi1i 624 . . . . . . 7 ((𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ (𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
2423exbii 1847 . . . . . 6 (∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤(𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
2518, 19, 243bitr4i 303 . . . . 5 (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
2617, 25bitrdi 287 . . . 4 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
276, 26alrimi 2212 . . 3 (∀𝑤∃*𝑧𝑦𝜑 → ∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
28 nfcv 2897 . . . . 5 𝑦𝐹
29 nfcv 2897 . . . . . . 7 𝑦(𝐹𝑥)
3029, 1nfrexw 3291 . . . . . 6 𝑦𝑤 ∈ (𝐹𝑥)∀𝑦𝜑
3130nfab 2903 . . . . 5 𝑦{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}
3228, 31nffv 6882 . . . 4 𝑦(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
33 nfcv 2897 . . . . . . 7 𝑦𝑧
34 nfcv 2897 . . . . . . 7 𝑦𝑅
3533, 34, 32nfbr 5163 . . . . . 6 𝑦 𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
36 nfv 1913 . . . . . . . 8 𝑦 𝑤𝑅𝑥
3736, 1nfan 1898 . . . . . . 7 𝑦(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)
3837nfex 2323 . . . . . 6 𝑦𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)
3935, 38nfbi 1902 . . . . 5 𝑦(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
4039nfal 2322 . . . 4 𝑦𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
41 nfcv 2897 . . . . . . 7 𝑧𝐹
42 nfab1 2899 . . . . . . 7 𝑧{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}
4341, 42nffv 6882 . . . . . 6 𝑧(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
4443nfeq2 2915 . . . . 5 𝑧 𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
45 breq2 5120 . . . . . 6 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})))
4645bibi1d 343 . . . . 5 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → ((𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
4744, 46albid 2221 . . . 4 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → (∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
4832, 40, 47spcegf 3569 . . 3 ((𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ∈ V → (∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
494, 27, 48mpsyl 68 . 2 (∀𝑤∃*𝑧𝑦𝜑 → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
503, 49sylbir 235 1 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2536  {cab 2712  wrex 3059  Vcvv 3457   class class class wbr 5116   E cep 5549  ccnv 5650  ccom 5655  1-1-ontowf1o 6526  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator