Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxrep Structured version   Visualization version   GIF version

Theorem permaxrep 45039
Description: The Axiom of Replacement ax-rep 5212 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxrep (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑦,𝐹,𝑧,𝑤   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑧,𝑤)   𝐹(𝑥)

Proof of Theorem permaxrep
StepHypRef Expression
1 nfa1 2154 . . . 4 𝑦𝑦𝜑
21mof 2558 . . 3 (∃*𝑧𝑦𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
32albii 1820 . 2 (∀𝑤∃*𝑧𝑦𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
4 fvex 6830 . . 3 (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ∈ V
5 nfmo1 2552 . . . . 5 𝑧∃*𝑧𝑦𝜑
65nfal 2324 . . . 4 𝑧𝑤∃*𝑧𝑦𝜑
7 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
8 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
9 vex 3440 . . . . . . 7 𝑧 ∈ V
107, 8, 9, 4brpermmodel 45036 . . . . . 6 (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})))
11 fvex 6830 . . . . . . . . 9 (𝐹𝑥) ∈ V
12 axrep6g 5223 . . . . . . . . 9 (((𝐹𝑥) ∈ V ∧ ∀𝑤∃*𝑧𝑦𝜑) → {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V)
1311, 12mpan 690 . . . . . . . 8 (∀𝑤∃*𝑧𝑦𝜑 → {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V)
14 f1ocnvfv2 7206 . . . . . . . 8 ((𝐹:V–1-1-onto→V ∧ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ∈ V) → (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
157, 13, 14sylancr 587 . . . . . . 7 (∀𝑤∃*𝑧𝑦𝜑 → (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
1615eleq2d 2817 . . . . . 6 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧 ∈ (𝐹‘(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}))
1710, 16bitrid 283 . . . . 5 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}))
18 df-rex 3057 . . . . . 6 (∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑 ↔ ∃𝑤(𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
19 abid 2713 . . . . . 6 (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ↔ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑)
20 vex 3440 . . . . . . . . 9 𝑤 ∈ V
21 vex 3440 . . . . . . . . 9 𝑥 ∈ V
227, 8, 20, 21brpermmodel 45036 . . . . . . . 8 (𝑤𝑅𝑥𝑤 ∈ (𝐹𝑥))
2322anbi1i 624 . . . . . . 7 ((𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ (𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
2423exbii 1849 . . . . . 6 (∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤(𝑤 ∈ (𝐹𝑥) ∧ ∀𝑦𝜑))
2518, 19, 243bitr4i 303 . . . . 5 (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑} ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
2617, 25bitrdi 287 . . . 4 (∀𝑤∃*𝑧𝑦𝜑 → (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
276, 26alrimi 2216 . . 3 (∀𝑤∃*𝑧𝑦𝜑 → ∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
28 nfcv 2894 . . . . 5 𝑦𝐹
29 nfcv 2894 . . . . . . 7 𝑦(𝐹𝑥)
3029, 1nfrexw 3280 . . . . . 6 𝑦𝑤 ∈ (𝐹𝑥)∀𝑦𝜑
3130nfab 2900 . . . . 5 𝑦{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}
3228, 31nffv 6827 . . . 4 𝑦(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
33 nfcv 2894 . . . . . . 7 𝑦𝑧
34 nfcv 2894 . . . . . . 7 𝑦𝑅
3533, 34, 32nfbr 5133 . . . . . 6 𝑦 𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
36 nfv 1915 . . . . . . . 8 𝑦 𝑤𝑅𝑥
3736, 1nfan 1900 . . . . . . 7 𝑦(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)
3837nfex 2325 . . . . . 6 𝑦𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)
3935, 38nfbi 1904 . . . . 5 𝑦(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
4039nfal 2324 . . . 4 𝑦𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))
41 nfcv 2894 . . . . . . 7 𝑧𝐹
42 nfab1 2896 . . . . . . 7 𝑧{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}
4341, 42nffv 6827 . . . . . 6 𝑧(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
4443nfeq2 2912 . . . . 5 𝑧 𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})
45 breq2 5090 . . . . . 6 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑})))
4645bibi1d 343 . . . . 5 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → ((𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
4744, 46albid 2225 . . . 4 (𝑦 = (𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) → (∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
4832, 40, 47spcegf 3542 . . 3 ((𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ∈ V → (∀𝑧(𝑧𝑅(𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))))
494, 27, 48mpsyl 68 . 2 (∀𝑤∃*𝑧𝑦𝜑 → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
503, 49sylbir 235 1 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  {cab 2709  wrex 3056  Vcvv 3436   class class class wbr 5086   E cep 5510  ccnv 5610  ccom 5615  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator