Proof of Theorem permaxrep
| Step | Hyp | Ref
| Expression |
| 1 | | nfa1 2150 |
. . . 4
⊢
Ⅎ𝑦∀𝑦𝜑 |
| 2 | 1 | mof 2561 |
. . 3
⊢
(∃*𝑧∀𝑦𝜑 ↔ ∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
| 3 | 2 | albii 1818 |
. 2
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 ↔ ∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
| 4 | | fvex 6885 |
. . 3
⊢ (◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ∈ V |
| 5 | | nfmo1 2555 |
. . . . 5
⊢
Ⅎ𝑧∃*𝑧∀𝑦𝜑 |
| 6 | 5 | nfal 2322 |
. . . 4
⊢
Ⅎ𝑧∀𝑤∃*𝑧∀𝑦𝜑 |
| 7 | | permmodel.1 |
. . . . . . 7
⊢ 𝐹:V–1-1-onto→V |
| 8 | | permmodel.2 |
. . . . . . 7
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 9 | | vex 3461 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 10 | 7, 8, 9, 4 | brpermmodel 44955 |
. . . . . 6
⊢ (𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ (𝐹‘(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}))) |
| 11 | | fvex 6885 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ∈ V |
| 12 | | axrep6g 5257 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) ∈ V ∧ ∀𝑤∃*𝑧∀𝑦𝜑) → {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} ∈ V) |
| 13 | 11, 12 | mpan 690 |
. . . . . . . 8
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} ∈ V) |
| 14 | | f1ocnvfv2 7265 |
. . . . . . . 8
⊢ ((𝐹:V–1-1-onto→V
∧ {𝑧 ∣
∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} ∈ V) → (𝐹‘(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 15 | 7, 13, 14 | sylancr 587 |
. . . . . . 7
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → (𝐹‘(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑})) = {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 16 | 15 | eleq2d 2819 |
. . . . . 6
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → (𝑧 ∈ (𝐹‘(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑})) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑})) |
| 17 | 10, 16 | bitrid 283 |
. . . . 5
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → (𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑})) |
| 18 | | df-rex 3060 |
. . . . . 6
⊢
(∃𝑤 ∈
(𝐹‘𝑥)∀𝑦𝜑 ↔ ∃𝑤(𝑤 ∈ (𝐹‘𝑥) ∧ ∀𝑦𝜑)) |
| 19 | | abid 2716 |
. . . . . 6
⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} ↔ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑) |
| 20 | | vex 3461 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 21 | | vex 3461 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 22 | 7, 8, 20, 21 | brpermmodel 44955 |
. . . . . . . 8
⊢ (𝑤𝑅𝑥 ↔ 𝑤 ∈ (𝐹‘𝑥)) |
| 23 | 22 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ (𝑤 ∈ (𝐹‘𝑥) ∧ ∀𝑦𝜑)) |
| 24 | 23 | exbii 1847 |
. . . . . 6
⊢
(∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤(𝑤 ∈ (𝐹‘𝑥) ∧ ∀𝑦𝜑)) |
| 25 | 18, 19, 24 | 3bitr4i 303 |
. . . . 5
⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) |
| 26 | 17, 25 | bitrdi 287 |
. . . 4
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → (𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) |
| 27 | 6, 26 | alrimi 2212 |
. . 3
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → ∀𝑧(𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) |
| 28 | | nfcv 2897 |
. . . . 5
⊢
Ⅎ𝑦◡𝐹 |
| 29 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦(𝐹‘𝑥) |
| 30 | 29, 1 | nfrexw 3291 |
. . . . . 6
⊢
Ⅎ𝑦∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑 |
| 31 | 30 | nfab 2903 |
. . . . 5
⊢
Ⅎ𝑦{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} |
| 32 | 28, 31 | nffv 6882 |
. . . 4
⊢
Ⅎ𝑦(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 33 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦𝑧 |
| 34 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦𝑅 |
| 35 | 33, 34, 32 | nfbr 5163 |
. . . . . 6
⊢
Ⅎ𝑦 𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 36 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑤𝑅𝑥 |
| 37 | 36, 1 | nfan 1898 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑤𝑅𝑥 ∧ ∀𝑦𝜑) |
| 38 | 37 | nfex 2323 |
. . . . . 6
⊢
Ⅎ𝑦∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑) |
| 39 | 35, 38 | nfbi 1902 |
. . . . 5
⊢
Ⅎ𝑦(𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) |
| 40 | 39 | nfal 2322 |
. . . 4
⊢
Ⅎ𝑦∀𝑧(𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) |
| 41 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑧◡𝐹 |
| 42 | | nfab1 2899 |
. . . . . . 7
⊢
Ⅎ𝑧{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑} |
| 43 | 41, 42 | nffv 6882 |
. . . . . 6
⊢
Ⅎ𝑧(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 44 | 43 | nfeq2 2915 |
. . . . 5
⊢
Ⅎ𝑧 𝑦 = (◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) |
| 45 | | breq2 5120 |
. . . . . 6
⊢ (𝑦 = (◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) → (𝑧𝑅𝑦 ↔ 𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}))) |
| 46 | 45 | bibi1d 343 |
. . . . 5
⊢ (𝑦 = (◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) → ((𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))) |
| 47 | 44, 46 | albid 2221 |
. . . 4
⊢ (𝑦 = (◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) → (∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))) |
| 48 | 32, 40, 47 | spcegf 3569 |
. . 3
⊢ ((◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ∈ V → (∀𝑧(𝑧𝑅(◡𝐹‘{𝑧 ∣ ∃𝑤 ∈ (𝐹‘𝑥)∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)) → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))) |
| 49 | 4, 27, 48 | mpsyl 68 |
. 2
⊢
(∀𝑤∃*𝑧∀𝑦𝜑 → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) |
| 50 | 3, 49 | sylbir 235 |
1
⊢
(∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) |