| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodelcnv | Structured version Visualization version GIF version | ||
| Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodelcnv | ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . 3 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . 3 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | brpermmodel.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fvex 6830 | . . 3 ⊢ (◡𝐹‘𝐵) ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 45036 | . 2 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ (𝐹‘(◡𝐹‘𝐵))) |
| 6 | brpermmodel.4 | . . . 4 ⊢ 𝐵 ∈ V | |
| 7 | f1ocnvfv2 7206 | . . . 4 ⊢ ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(◡𝐹‘𝐵)) = 𝐵) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (𝐹‘(◡𝐹‘𝐵)) = 𝐵 |
| 9 | 8 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ (𝐹‘(◡𝐹‘𝐵)) ↔ 𝐴 ∈ 𝐵) |
| 10 | 5, 9 | bitri 275 | 1 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 E cep 5510 ◡ccnv 5610 ∘ ccom 5615 –1-1-onto→wf1o 6475 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: permaxsep 45040 permaxnul 45041 permaxpow 45042 permaxpr 45043 permaxun 45044 permaxinf2lem 45045 permac8prim 45047 |
| Copyright terms: Public domain | W3C validator |