Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodelcnv Structured version   Visualization version   GIF version

Theorem brpermmodelcnv 44998
Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodelcnv (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)

Proof of Theorem brpermmodelcnv
StepHypRef Expression
1 permmodel.1 . . 3 𝐹:V–1-1-onto→V
2 permmodel.2 . . 3 𝑅 = (𝐹 ∘ E )
3 brpermmodel.3 . . 3 𝐴 ∈ V
4 fvex 6839 . . 3 (𝐹𝐵) ∈ V
51, 2, 3, 4brpermmodel 44997 . 2 (𝐴𝑅(𝐹𝐵) ↔ 𝐴 ∈ (𝐹‘(𝐹𝐵)))
6 brpermmodel.4 . . . 4 𝐵 ∈ V
7 f1ocnvfv2 7218 . . . 4 ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(𝐹𝐵)) = 𝐵)
81, 6, 7mp2an 692 . . 3 (𝐹‘(𝐹𝐵)) = 𝐵
98eleq2i 2820 . 2 (𝐴 ∈ (𝐹‘(𝐹𝐵)) ↔ 𝐴𝐵)
105, 9bitri 275 1 (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095   E cep 5522  ccnv 5622  ccom 5627  1-1-ontowf1o 6485  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  permaxsep  45001  permaxnul  45002  permaxpow  45003  permaxpr  45004  permaxun  45005  permaxinf2lem  45006  permac8prim  45008
  Copyright terms: Public domain W3C validator