| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodelcnv | Structured version Visualization version GIF version | ||
| Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodelcnv | ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . 3 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . 3 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | brpermmodel.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fvex 6873 | . . 3 ⊢ (◡𝐹‘𝐵) ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 44986 | . 2 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ (𝐹‘(◡𝐹‘𝐵))) |
| 6 | brpermmodel.4 | . . . 4 ⊢ 𝐵 ∈ V | |
| 7 | f1ocnvfv2 7254 | . . . 4 ⊢ ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(◡𝐹‘𝐵)) = 𝐵) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (𝐹‘(◡𝐹‘𝐵)) = 𝐵 |
| 9 | 8 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ (𝐹‘(◡𝐹‘𝐵)) ↔ 𝐴 ∈ 𝐵) |
| 10 | 5, 9 | bitri 275 | 1 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 E cep 5539 ◡ccnv 5639 ∘ ccom 5644 –1-1-onto→wf1o 6512 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 |
| This theorem is referenced by: permaxsep 44990 permaxnul 44991 permaxpow 44992 permaxpr 44993 permaxun 44994 permaxinf2lem 44995 permac8prim 44997 |
| Copyright terms: Public domain | W3C validator |