| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodelcnv | Structured version Visualization version GIF version | ||
| Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodelcnv | ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . 3 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . 3 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | brpermmodel.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fvex 6844 | . . 3 ⊢ (◡𝐹‘𝐵) ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 45160 | . 2 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ (𝐹‘(◡𝐹‘𝐵))) |
| 6 | brpermmodel.4 | . . . 4 ⊢ 𝐵 ∈ V | |
| 7 | f1ocnvfv2 7220 | . . . 4 ⊢ ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(◡𝐹‘𝐵)) = 𝐵) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (𝐹‘(◡𝐹‘𝐵)) = 𝐵 |
| 9 | 8 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ (𝐹‘(◡𝐹‘𝐵)) ↔ 𝐴 ∈ 𝐵) |
| 10 | 5, 9 | bitri 275 | 1 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 E cep 5520 ◡ccnv 5620 ∘ ccom 5625 –1-1-onto→wf1o 6488 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: permaxsep 45164 permaxnul 45165 permaxpow 45166 permaxpr 45167 permaxun 45168 permaxinf2lem 45169 permac8prim 45171 |
| Copyright terms: Public domain | W3C validator |