Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodelcnv Structured version   Visualization version   GIF version

Theorem brpermmodelcnv 45161
Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodelcnv (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)

Proof of Theorem brpermmodelcnv
StepHypRef Expression
1 permmodel.1 . . 3 𝐹:V–1-1-onto→V
2 permmodel.2 . . 3 𝑅 = (𝐹 ∘ E )
3 brpermmodel.3 . . 3 𝐴 ∈ V
4 fvex 6844 . . 3 (𝐹𝐵) ∈ V
51, 2, 3, 4brpermmodel 45160 . 2 (𝐴𝑅(𝐹𝐵) ↔ 𝐴 ∈ (𝐹‘(𝐹𝐵)))
6 brpermmodel.4 . . . 4 𝐵 ∈ V
7 f1ocnvfv2 7220 . . . 4 ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(𝐹𝐵)) = 𝐵)
81, 6, 7mp2an 692 . . 3 (𝐹‘(𝐹𝐵)) = 𝐵
98eleq2i 2825 . 2 (𝐴 ∈ (𝐹‘(𝐹𝐵)) ↔ 𝐴𝐵)
105, 9bitri 275 1 (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5095   E cep 5520  ccnv 5620  ccom 5625  1-1-ontowf1o 6488  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  permaxsep  45164  permaxnul  45165  permaxpow  45166  permaxpr  45167  permaxun  45168  permaxinf2lem  45169  permac8prim  45171
  Copyright terms: Public domain W3C validator