| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodelcnv | Structured version Visualization version GIF version | ||
| Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodelcnv | ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | . . 3 ⊢ 𝐹:V–1-1-onto→V | |
| 2 | permmodel.2 | . . 3 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 3 | brpermmodel.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fvex 6853 | . . 3 ⊢ (◡𝐹‘𝐵) ∈ V | |
| 5 | 1, 2, 3, 4 | brpermmodel 44966 | . 2 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ (𝐹‘(◡𝐹‘𝐵))) |
| 6 | brpermmodel.4 | . . . 4 ⊢ 𝐵 ∈ V | |
| 7 | f1ocnvfv2 7234 | . . . 4 ⊢ ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(◡𝐹‘𝐵)) = 𝐵) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (𝐹‘(◡𝐹‘𝐵)) = 𝐵 |
| 9 | 8 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ (𝐹‘(◡𝐹‘𝐵)) ↔ 𝐴 ∈ 𝐵) |
| 10 | 5, 9 | bitri 275 | 1 ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 E cep 5530 ◡ccnv 5630 ∘ ccom 5635 –1-1-onto→wf1o 6498 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: permaxsep 44970 permaxnul 44971 permaxpow 44972 permaxpr 44973 permaxun 44974 permaxinf2lem 44975 permac8prim 44977 |
| Copyright terms: Public domain | W3C validator |