Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodelcnv Structured version   Visualization version   GIF version

Theorem brpermmodelcnv 44956
Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodelcnv (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)

Proof of Theorem brpermmodelcnv
StepHypRef Expression
1 permmodel.1 . . 3 𝐹:V–1-1-onto→V
2 permmodel.2 . . 3 𝑅 = (𝐹 ∘ E )
3 brpermmodel.3 . . 3 𝐴 ∈ V
4 fvex 6885 . . 3 (𝐹𝐵) ∈ V
51, 2, 3, 4brpermmodel 44955 . 2 (𝐴𝑅(𝐹𝐵) ↔ 𝐴 ∈ (𝐹‘(𝐹𝐵)))
6 brpermmodel.4 . . . 4 𝐵 ∈ V
7 f1ocnvfv2 7265 . . . 4 ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(𝐹𝐵)) = 𝐵)
81, 6, 7mp2an 692 . . 3 (𝐹‘(𝐹𝐵)) = 𝐵
98eleq2i 2825 . 2 (𝐴 ∈ (𝐹‘(𝐹𝐵)) ↔ 𝐴𝐵)
105, 9bitri 275 1 (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  Vcvv 3457   class class class wbr 5116   E cep 5549  ccnv 5650  ccom 5655  1-1-ontowf1o 6526  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535
This theorem is referenced by:  permaxsep  44959  permaxnul  44960  permaxpow  44961  permaxpr  44962  permaxun  44963  permaxinf2lem  44964
  Copyright terms: Public domain W3C validator