Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodelcnv Structured version   Visualization version   GIF version

Theorem brpermmodelcnv 44987
Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodelcnv (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)

Proof of Theorem brpermmodelcnv
StepHypRef Expression
1 permmodel.1 . . 3 𝐹:V–1-1-onto→V
2 permmodel.2 . . 3 𝑅 = (𝐹 ∘ E )
3 brpermmodel.3 . . 3 𝐴 ∈ V
4 fvex 6873 . . 3 (𝐹𝐵) ∈ V
51, 2, 3, 4brpermmodel 44986 . 2 (𝐴𝑅(𝐹𝐵) ↔ 𝐴 ∈ (𝐹‘(𝐹𝐵)))
6 brpermmodel.4 . . . 4 𝐵 ∈ V
7 f1ocnvfv2 7254 . . . 4 ((𝐹:V–1-1-onto→V ∧ 𝐵 ∈ V) → (𝐹‘(𝐹𝐵)) = 𝐵)
81, 6, 7mp2an 692 . . 3 (𝐹‘(𝐹𝐵)) = 𝐵
98eleq2i 2821 . 2 (𝐴 ∈ (𝐹‘(𝐹𝐵)) ↔ 𝐴𝐵)
105, 9bitri 275 1 (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5109   E cep 5539  ccnv 5639  ccom 5644  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by:  permaxsep  44990  permaxnul  44991  permaxpow  44992  permaxpr  44993  permaxun  44994  permaxinf2lem  44995  permac8prim  44997
  Copyright terms: Public domain W3C validator