| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodel | Structured version Visualization version GIF version | ||
| Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodel | ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5514 | . . . 4 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | brpermmodel.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brcnv 5817 | . . . 4 ⊢ (𝑥◡𝐹𝐵 ↔ 𝐵𝐹𝑥) |
| 5 | 1, 4 | anbi12i 628 | . . 3 ⊢ ((𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 6 | 5 | exbii 1849 | . 2 ⊢ (∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 7 | permmodel.2 | . . . 4 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | 7 | breqi 5092 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝐹 ∘ E )𝐵) |
| 9 | brpermmodel.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 10 | 9, 3 | brco 5805 | . . 3 ⊢ (𝐴(◡𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 11 | 8, 10 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 12 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 13 | f1ofn 6759 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹 Fn V) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝐹 Fn V |
| 15 | fneu 6586 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥) | |
| 16 | 14, 3, 15 | mp2an 692 | . . 3 ⊢ ∃!𝑥 𝐵𝐹𝑥 |
| 17 | eleq1 2819 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 18 | 17 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 19 | 18 | exbidv 1922 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 20 | 19 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))) |
| 21 | fv3 6835 | . . . 4 ⊢ (𝐹‘𝐵) = {𝑦 ∣ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)} | |
| 22 | 9, 20, 21 | elab2 3633 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)) |
| 23 | 16, 22 | mpbiran2 710 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 24 | 6, 11, 23 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 class class class wbr 5086 E cep 5510 ◡ccnv 5610 ∘ ccom 5615 Fn wfn 6471 –1-1-onto→wf1o 6475 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: brpermmodelcnv 45037 permaxext 45038 permaxrep 45039 permaxsep 45040 permaxpow 45042 permaxun 45044 permaxinf2lem 45045 permac8prim 45047 nregmodellem 45049 |
| Copyright terms: Public domain | W3C validator |