| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodel | Structured version Visualization version GIF version | ||
| Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodel | ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5543 | . . . 4 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) | |
| 2 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | brpermmodel.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brcnv 5848 | . . . 4 ⊢ (𝑥◡𝐹𝐵 ↔ 𝐵𝐹𝑥) |
| 5 | 1, 4 | anbi12i 628 | . . 3 ⊢ ((𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 6 | 5 | exbii 1848 | . 2 ⊢ (∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 7 | permmodel.2 | . . . 4 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | 7 | breqi 5115 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝐹 ∘ E )𝐵) |
| 9 | brpermmodel.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 10 | 9, 3 | brco 5836 | . . 3 ⊢ (𝐴(◡𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 11 | 8, 10 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 12 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 13 | f1ofn 6803 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹 Fn V) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝐹 Fn V |
| 15 | fneu 6630 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥) | |
| 16 | 14, 3, 15 | mp2an 692 | . . 3 ⊢ ∃!𝑥 𝐵𝐹𝑥 |
| 17 | eleq1 2817 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 18 | 17 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 19 | 18 | exbidv 1921 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 20 | 19 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))) |
| 21 | fv3 6878 | . . . 4 ⊢ (𝐹‘𝐵) = {𝑦 ∣ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)} | |
| 22 | 9, 20, 21 | elab2 3651 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)) |
| 23 | 16, 22 | mpbiran2 710 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 24 | 6, 11, 23 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 class class class wbr 5109 E cep 5539 ◡ccnv 5639 ∘ ccom 5644 Fn wfn 6508 –1-1-onto→wf1o 6512 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-f1o 6520 df-fv 6521 |
| This theorem is referenced by: brpermmodelcnv 44987 permaxext 44988 permaxrep 44989 permaxsep 44990 permaxpow 44992 permaxun 44994 permaxinf2lem 44995 permac8prim 44997 nregmodellem 44999 |
| Copyright terms: Public domain | W3C validator |