| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodel | Structured version Visualization version GIF version | ||
| Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodel | ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5524 | . . . 4 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) | |
| 2 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | brpermmodel.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brcnv 5828 | . . . 4 ⊢ (𝑥◡𝐹𝐵 ↔ 𝐵𝐹𝑥) |
| 5 | 1, 4 | anbi12i 628 | . . 3 ⊢ ((𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 6 | 5 | exbii 1849 | . 2 ⊢ (∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 7 | permmodel.2 | . . . 4 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | 7 | breqi 5101 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝐹 ∘ E )𝐵) |
| 9 | brpermmodel.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 10 | 9, 3 | brco 5816 | . . 3 ⊢ (𝐴(◡𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 11 | 8, 10 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 12 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 13 | f1ofn 6772 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹 Fn V) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝐹 Fn V |
| 15 | fneu 6599 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥) | |
| 16 | 14, 3, 15 | mp2an 692 | . . 3 ⊢ ∃!𝑥 𝐵𝐹𝑥 |
| 17 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 18 | 17 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 19 | 18 | exbidv 1922 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 20 | 19 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))) |
| 21 | fv3 6849 | . . . 4 ⊢ (𝐹‘𝐵) = {𝑦 ∣ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)} | |
| 22 | 9, 20, 21 | elab2 3634 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)) |
| 23 | 16, 22 | mpbiran2 710 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 24 | 6, 11, 23 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 class class class wbr 5095 E cep 5520 ◡ccnv 5620 ∘ ccom 5625 Fn wfn 6484 –1-1-onto→wf1o 6488 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: brpermmodelcnv 45161 permaxext 45162 permaxrep 45163 permaxsep 45164 permaxpow 45166 permaxun 45168 permaxinf2lem 45169 permac8prim 45171 nregmodellem 45173 |
| Copyright terms: Public domain | W3C validator |