Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodel Structured version   Visualization version   GIF version

Theorem brpermmodel 44955
Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodel (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))

Proof of Theorem brpermmodel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5553 . . . 4 (𝐴 E 𝑥𝐴𝑥)
2 vex 3461 . . . . 5 𝑥 ∈ V
3 brpermmodel.4 . . . . 5 𝐵 ∈ V
42, 3brcnv 5859 . . . 4 (𝑥𝐹𝐵𝐵𝐹𝑥)
51, 4anbi12i 628 . . 3 ((𝐴 E 𝑥𝑥𝐹𝐵) ↔ (𝐴𝑥𝐵𝐹𝑥))
65exbii 1847 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
7 permmodel.2 . . . 4 𝑅 = (𝐹 ∘ E )
87breqi 5122 . . 3 (𝐴𝑅𝐵𝐴(𝐹 ∘ E )𝐵)
9 brpermmodel.3 . . . 4 𝐴 ∈ V
109, 3brco 5847 . . 3 (𝐴(𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
118, 10bitri 275 . 2 (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
12 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
13 f1ofn 6815 . . . . 5 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
1412, 13ax-mp 5 . . . 4 𝐹 Fn V
15 fneu 6644 . . . 4 ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥)
1614, 3, 15mp2an 692 . . 3 ∃!𝑥 𝐵𝐹𝑥
17 eleq1 2821 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
1817anbi1d 631 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝐵𝐹𝑥) ↔ (𝐴𝑥𝐵𝐹𝑥)))
1918exbidv 1920 . . . . 5 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥)))
2019anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)))
21 fv3 6890 . . . 4 (𝐹𝐵) = {𝑦 ∣ (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)}
229, 20, 21elab2 3659 . . 3 (𝐴 ∈ (𝐹𝐵) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))
2316, 22mpbiran2 710 . 2 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
246, 11, 233bitr4i 303 1 (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃!weu 2566  Vcvv 3457   class class class wbr 5116   E cep 5549  ccnv 5650  ccom 5655   Fn wfn 6522  1-1-ontowf1o 6526  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-f1o 6534  df-fv 6535
This theorem is referenced by:  brpermmodelcnv  44956  permaxext  44957  permaxrep  44958  permaxsep  44959  permaxpow  44961  permaxun  44963  permaxinf2lem  44964
  Copyright terms: Public domain W3C validator