Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodel Structured version   Visualization version   GIF version

Theorem brpermmodel 45036
Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodel (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))

Proof of Theorem brpermmodel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5514 . . . 4 (𝐴 E 𝑥𝐴𝑥)
2 vex 3440 . . . . 5 𝑥 ∈ V
3 brpermmodel.4 . . . . 5 𝐵 ∈ V
42, 3brcnv 5817 . . . 4 (𝑥𝐹𝐵𝐵𝐹𝑥)
51, 4anbi12i 628 . . 3 ((𝐴 E 𝑥𝑥𝐹𝐵) ↔ (𝐴𝑥𝐵𝐹𝑥))
65exbii 1849 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
7 permmodel.2 . . . 4 𝑅 = (𝐹 ∘ E )
87breqi 5092 . . 3 (𝐴𝑅𝐵𝐴(𝐹 ∘ E )𝐵)
9 brpermmodel.3 . . . 4 𝐴 ∈ V
109, 3brco 5805 . . 3 (𝐴(𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
118, 10bitri 275 . 2 (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
12 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
13 f1ofn 6759 . . . . 5 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
1412, 13ax-mp 5 . . . 4 𝐹 Fn V
15 fneu 6586 . . . 4 ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥)
1614, 3, 15mp2an 692 . . 3 ∃!𝑥 𝐵𝐹𝑥
17 eleq1 2819 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
1817anbi1d 631 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝐵𝐹𝑥) ↔ (𝐴𝑥𝐵𝐹𝑥)))
1918exbidv 1922 . . . . 5 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥)))
2019anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)))
21 fv3 6835 . . . 4 (𝐹𝐵) = {𝑦 ∣ (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)}
229, 20, 21elab2 3633 . . 3 (𝐴 ∈ (𝐹𝐵) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))
2316, 22mpbiran2 710 . 2 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
246, 11, 233bitr4i 303 1 (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  Vcvv 3436   class class class wbr 5086   E cep 5510  ccnv 5610  ccom 5615   Fn wfn 6471  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-f1o 6483  df-fv 6484
This theorem is referenced by:  brpermmodelcnv  45037  permaxext  45038  permaxrep  45039  permaxsep  45040  permaxpow  45042  permaxun  45044  permaxinf2lem  45045  permac8prim  45047  nregmodellem  45049
  Copyright terms: Public domain W3C validator