| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodel | Structured version Visualization version GIF version | ||
| Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodel | ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5534 | . . . 4 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) | |
| 2 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | brpermmodel.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brcnv 5836 | . . . 4 ⊢ (𝑥◡𝐹𝐵 ↔ 𝐵𝐹𝑥) |
| 5 | 1, 4 | anbi12i 628 | . . 3 ⊢ ((𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 6 | 5 | exbii 1848 | . 2 ⊢ (∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 7 | permmodel.2 | . . . 4 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | 7 | breqi 5108 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝐹 ∘ E )𝐵) |
| 9 | brpermmodel.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 10 | 9, 3 | brco 5824 | . . 3 ⊢ (𝐴(◡𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 11 | 8, 10 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 12 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 13 | f1ofn 6783 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹 Fn V) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝐹 Fn V |
| 15 | fneu 6610 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥) | |
| 16 | 14, 3, 15 | mp2an 692 | . . 3 ⊢ ∃!𝑥 𝐵𝐹𝑥 |
| 17 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 18 | 17 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 19 | 18 | exbidv 1921 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 20 | 19 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))) |
| 21 | fv3 6858 | . . . 4 ⊢ (𝐹‘𝐵) = {𝑦 ∣ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)} | |
| 22 | 9, 20, 21 | elab2 3646 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)) |
| 23 | 16, 22 | mpbiran2 710 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 24 | 6, 11, 23 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 Vcvv 3444 class class class wbr 5102 E cep 5530 ◡ccnv 5630 ∘ ccom 5635 Fn wfn 6494 –1-1-onto→wf1o 6498 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: brpermmodelcnv 44967 permaxext 44968 permaxrep 44969 permaxsep 44970 permaxpow 44972 permaxun 44974 permaxinf2lem 44975 permac8prim 44977 nregmodellem 44979 |
| Copyright terms: Public domain | W3C validator |