Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpermmodel Structured version   Visualization version   GIF version

Theorem brpermmodel 44986
Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion
Ref Expression
brpermmodel (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))

Proof of Theorem brpermmodel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5543 . . . 4 (𝐴 E 𝑥𝐴𝑥)
2 vex 3454 . . . . 5 𝑥 ∈ V
3 brpermmodel.4 . . . . 5 𝐵 ∈ V
42, 3brcnv 5848 . . . 4 (𝑥𝐹𝐵𝐵𝐹𝑥)
51, 4anbi12i 628 . . 3 ((𝐴 E 𝑥𝑥𝐹𝐵) ↔ (𝐴𝑥𝐵𝐹𝑥))
65exbii 1848 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
7 permmodel.2 . . . 4 𝑅 = (𝐹 ∘ E )
87breqi 5115 . . 3 (𝐴𝑅𝐵𝐴(𝐹 ∘ E )𝐵)
9 brpermmodel.3 . . . 4 𝐴 ∈ V
109, 3brco 5836 . . 3 (𝐴(𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
118, 10bitri 275 . 2 (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝐹𝐵))
12 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
13 f1ofn 6803 . . . . 5 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
1412, 13ax-mp 5 . . . 4 𝐹 Fn V
15 fneu 6630 . . . 4 ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥)
1614, 3, 15mp2an 692 . . 3 ∃!𝑥 𝐵𝐹𝑥
17 eleq1 2817 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
1817anbi1d 631 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝐵𝐹𝑥) ↔ (𝐴𝑥𝐵𝐹𝑥)))
1918exbidv 1921 . . . . 5 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥)))
2019anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)))
21 fv3 6878 . . . 4 (𝐹𝐵) = {𝑦 ∣ (∃𝑥(𝑦𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)}
229, 20, 21elab2 3651 . . 3 (𝐴 ∈ (𝐹𝐵) ↔ (∃𝑥(𝐴𝑥𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))
2316, 22mpbiran2 710 . 2 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥𝐵𝐹𝑥))
246, 11, 233bitr4i 303 1 (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  Vcvv 3450   class class class wbr 5109   E cep 5539  ccnv 5639  ccom 5644   Fn wfn 6508  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-f1o 6520  df-fv 6521
This theorem is referenced by:  brpermmodelcnv  44987  permaxext  44988  permaxrep  44989  permaxsep  44990  permaxpow  44992  permaxun  44994  permaxinf2lem  44995  permac8prim  44997  nregmodellem  44999
  Copyright terms: Public domain W3C validator