| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpermmodel | Structured version Visualization version GIF version | ||
| Description: The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| brpermmodel.3 | ⊢ 𝐴 ∈ V |
| brpermmodel.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brpermmodel | ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5553 | . . . 4 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) | |
| 2 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | brpermmodel.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brcnv 5859 | . . . 4 ⊢ (𝑥◡𝐹𝐵 ↔ 𝐵𝐹𝑥) |
| 5 | 1, 4 | anbi12i 628 | . . 3 ⊢ ((𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 6 | 5 | exbii 1847 | . 2 ⊢ (∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 7 | permmodel.2 | . . . 4 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | 7 | breqi 5122 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝐹 ∘ E )𝐵) |
| 9 | brpermmodel.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 10 | 9, 3 | brco 5847 | . . 3 ⊢ (𝐴(◡𝐹 ∘ E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 11 | 8, 10 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴 E 𝑥 ∧ 𝑥◡𝐹𝐵)) |
| 12 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 13 | f1ofn 6815 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → 𝐹 Fn V) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝐹 Fn V |
| 15 | fneu 6644 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐵 ∈ V) → ∃!𝑥 𝐵𝐹𝑥) | |
| 16 | 14, 3, 15 | mp2an 692 | . . 3 ⊢ ∃!𝑥 𝐵𝐹𝑥 |
| 17 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 18 | 17 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ (𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 19 | 18 | exbidv 1920 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥))) |
| 20 | 19 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥))) |
| 21 | fv3 6890 | . . . 4 ⊢ (𝐹‘𝐵) = {𝑦 ∣ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)} | |
| 22 | 9, 20, 21 | elab2 3659 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥) ∧ ∃!𝑥 𝐵𝐹𝑥)) |
| 23 | 16, 22 | mpbiran2 710 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝐵𝐹𝑥)) |
| 24 | 6, 11, 23 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 Vcvv 3457 class class class wbr 5116 E cep 5549 ◡ccnv 5650 ∘ ccom 5655 Fn wfn 6522 –1-1-onto→wf1o 6526 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-f1o 6534 df-fv 6535 |
| This theorem is referenced by: brpermmodelcnv 44956 permaxext 44957 permaxrep 44958 permaxsep 44959 permaxpow 44961 permaxun 44963 permaxinf2lem 44964 |
| Copyright terms: Public domain | W3C validator |